Chapter 5
Digital Signatures

Lectured by
Nguyễn Đức Thái
Outline

- Digital Signatures
- Digital Signature Algorithm and Standard

CuuDuongThanCong.com

https://fb.com/tailieudientucntt
Digital Signatures

- A digital signature is an authentication mechanism that enables the creator of a message to attach a code that acts as a signature.
- Typically the signature is formed by taking the hash of the message and encrypting the message with the creator’s private key.
- The signature guarantees the source and integrity of the message.
- The digital signature standard (DSS) is an NIST standard that uses the secure hash algorithm (SHA).
Digital Signature Model

Bob

Transmit

Alice

Bob’s private key

Digital signature generation algorithm

Bob’s signature for M

Digital signature verification algorithm

Return signature valid or not valid

Bob’s public key

Message M

Message M
Digital Signature Model

Bob

Message M

Cryptographic hash function

h

Encrypt

Bob’s signature for M

Bob’s private key

Alice

Message M

Cryptographic hash function

h

h'

Decrypt

Compare

Return signature valid or not valid

Bob’s public key

Bob’s signature for M
Attacks and Forgeries

- **attacks**
 - key-only attack
 - known message attack
 - generic chosen message attack
 - directed chosen message attack
 - adaptive chosen message attack

- **break success levels**
 - total break
 - selective forgery
 - existential forgery
Digital Signature Requirements

- must depend on the message signed
- must use information unique to sender
 - to prevent both forgery and denial
- must be relatively easy to produce
- must be relatively easy to recognize & verify
- be computationally infeasible to forge
 - with new message for existing digital signature
 - with fraudulent digital signature for given message
- be practical save digital signature in storage
Direct Digital Signatures

- involve only sender & receiver
- assumed receiver has sender’s public-key
- digital signature made by sender signing entire message or hash with private-key
- can encrypt using receiver's public-key
- important that sign first then encrypt message & signature
- security depends on sender’s private-key
Digital Signature Standard (DSS)

- US Govt approved signature scheme
- designed by NIST & NSA in early 90's
- published as FIPS-186 in 1991
- revised in 1993, 1996 & then 2000
- uses the SHA hash algorithm
- DSS is the standard, DSA is the algorithm
- FIPS 186-2 (2000) includes alternative RSA & elliptic curve signature variants
- DSA is digital signature only unlike RSA
- is a public-key technique
DSS vs. RSA Signatures

(a) RSA Approach

(b) DSS Approach
Digital Signature Algorithm (DSA)

- creates a 320 bit signature
- with 512-1024 bit security
- smaller and faster than RSA
- a digital signature scheme only
- security depends on difficulty of computing discrete logarithms
- variant of ElGamal & Schnorr schemes

CuuDuongThanCong.com
https://fb.com/tailieudientucntt
DSA Key Generation

- **have shared global public key values (p,q,g):**
 - choose 160-bit prime number q
 - choose a large prime p with $2^{L-1} < p < 2^L$
 - where L = 512 to 1024 bits and is a multiple of 64
 - such that q is a 160 bit prime divisor of (p-1)
 - choose $g = h^{(p-1)/q}$
 - where $1 < h < p-1$ and $h^{(p-1)/q} \mod p > 1$

- **users choose private & compute public key:**
 - choose random private key: $x < q$
 - compute public key: $y = g^x \mod p$
to sign a message \(M \) the sender:
- generates a random signature key \(k \), \(k \lt q \)
- Note: \(k \) must be random, be destroyed after use, and never be reused

then computes signature pair:
\[
\begin{align*}
 r &= (g^k \mod p) \mod q \\
 s &= [k^{-1}(H(M)+ xr)] \mod q
\end{align*}
\]

sends signature \((r, s)\) with message \(M \)
DSA Signature Verification

- having received M & signature (r,s)
- to verify a signature, recipient computes:
 \[w = s^{-1} \mod q \]
 \[u_1 = [H(M)w] \mod q \]
 \[u_2 = (rw) \mod q \]
 \[v = [(g^{u_1} y^{u_2}) \mod p] \mod q \]
- if v=r then signature is verified
- see Appendix A for details of proof why

CuuDuongThanCong.com
https://fb.com/tailieudientucntt
DSS Overview

\[s = f_1(H(M), k, x, r, q) = (k^{-1} (H(M) + xr)) \mod q \]

\[r = f_2(k, p, q, g) = (g^k \mod p) \mod q \]

\[w = f_3(s', q) = (s')^{-1} \mod q \]

\[v = f_4(y, q, g, H(M'), w, r') = ((g(H(M')w) \mod q)^r \mod q) \mod p) \mod q \]

(a) Signing

(b) Verifying
We have discussed:

- Digital Signatures
- Digital Signature Algorithm and Standard
References

http://www.cuu duong than cong . com