Chapter 4

Functions

Discrete Mathematics I on 13 March 2012

Tran Vinh Tan
Faculty of Computer Science and Engineering
University of Technology - VNUHCM
Contents

1. Functions

2. One-to-one and Onto Functions

3. Sequences and Summation

4. Recursion
Introduction

Each student is assigned a grade from set \{0, 0.1, 0.2, 0.3, \ldots, 9.9, 10.0\} at the end of semester.
Introduction

• Each student is assigned a grade from set \(\{0, 0.1, 0.2, 0.3, \ldots, 9.9, 10.0\} \) at the end of semester
• Function is extremely important in mathematics and computer science
Introduction

- Each student is assigned a grade from set \{0, 0.1, 0.2, 0.3, \ldots, 9.9, 10.0\} at the end of semester
- Function is extremely important in mathematics and computer science
 - linear, polynomial, exponential, logarithmic,...
Introduction

• Each student is assigned a grade from set \(\{0, 0.1, 0.2, 0.3, \ldots, 9.9, 10.0\} \) at the end of semester
• Function is extremely important in mathematics and computer science
 • linear, polynomial, exponential, logarithmic,…
• Don’t worry! For discrete mathematics, we need to understand functions at a basic set theoretic level
Function

Definition

Let A and B be nonempty sets. A **function** f from A to B is an assignment of **exactly one** element of B to each element of A.

- $f: A \rightarrow B$
- A: domain (miền xác định) of f
- B: codomain (miền giá trị) of f
- For each $a \in A$, if $f(a) = b$, b is an image (ảnh) of a
- a is pre-image (nghịch ảnh) of $f(a)$
- Range of f is the set of all images of elements of A
- f maps (ánh xạ) A to B

A B

$f(a) = b$
Function

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f : A \rightarrow B$
Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f : A \rightarrow B$
- A: domain (miền xác định) of f
- B: codomain (miền giá trị) of f
- Range of f is the set of all images of elements of A
- f maps (ảnh xạ) A to B
- $a = f(a)$
Function

Definition
Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

- $f : A \rightarrow B$
- A: domain (*miền xác định*) of f
- B: codomain (*miền giá trị*) of f
Function

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f : A \rightarrow B$
- A: domain (miền xác định) of f
- B: codomain (miền giá trị) of f
- For each $a \in A$, if $f(a) = b$
Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f : A \rightarrow B$
- A: domain (miền xác định) of f
- B: codomain (miền giá trị) of f
- For each $a \in A$, if $f(a) = b$
 - b is an image (ảnh) of a
Function

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f : A \to B$
- A: domain (*miền xác định*) of f
- B: codomain (*miền giá trị*) of f
- For each $a \in A$, if $f(a) = b$
 - b is an image (*ảnh*) of a
 - a is pre-image (*nghịch ảnh*) of $f(a)$
Function

Definition
Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f : A \rightarrow B$
- A: domain (miện xác định) of f
- B: codomain (miện giá trị) of f
- For each $a \in A$, if $f(a) = b$
 - b is an image (ảnh) of a
 - a is pre-image (nghịch ảnh) of $f(a)$
- Range of f is the set of all images of elements of A
Function

Definition

Let A and B be nonempty sets. A **function** f from A to B is an assignment of exactly one element of B to each element of A.

- $f : A \rightarrow B$
- A: domain *(miền xác định)* of f
- B: codomain *(miền giá trị)* of f
- For each $a \in A$, if $f(a) = b$
 - b is an image *(ảnh)* of a
 - a is pre-image *(nghịch ảnh)* of $f(a)$
- Range of f is the set of all images of elements of A
- f maps *(ảnh xạ)* A to B
Function

Definition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

- $f : A \rightarrow B$
- A: domain (miền xác định) of f
- B: codomain (miền giá trị) of f
- For each $a \in A$, if $f(a) = b$
 - b is an image (ảnh) of a
 - a is pre-image (nghịch ảnh) of $f(a)$
- **Range** of f is the set of all images of elements of A
- f maps (ánh xạ) A to B

![Diagram of function](https://fb.com/tailieudientucntt)
Example

- y is an image of d
- c is a pre-image of z
Example:

- \(y \) is an image of \(d \)
- \(c \) is a pre-image of \(z \)
Example:

- y is an image of d
Example:

- y is an image of d
- c is a pre-image of z
Example

What are domain, codomain, and range of the function that assigns grades to students includes: student A: 5, B: 3.5, C: 9, D: 5.2, E: 4.9?

Example

Let $f : \mathbb{Z} \rightarrow \mathbb{Z}$ assign the square of an integer to this integer. What is $f(x)$? Domain, codomain, range of f?
Example
What are domain, codomain, and range of the function that assigns grades to students includes: student A: 5, B: 3.5, C: 9, D: 5.2, E: 4.9?

Example
Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ assign the the square of an integer to this integer. What is $f(x)$? Domain, codomain, range of f?

- $f(x) = x^2$
- Domain: set of all integers
- Codomain: Set of all integers
- Range of f: \{0, 1, 4, 9, \ldots\}
Example

What are domain, codomain, and range of the function that assigns grades to students includes: student A: 5, B: 3.5, C: 9, D: 5.2, E: 4.9?

Example

Let \(f : \mathbb{Z} \to \mathbb{Z} \) assign the the square of an integer to this integer. What is \(f(x) \)? Domain, codomain, range of \(f \)?

- \(f(x) = x^2 \)
- Domain: set of all integers
- Codomain: Set of all integers
- Range of \(f \) : \(\{0, 1, 4, 9, \ldots\} \)
Add and multiply real-valued functions

Definition

Let \(f_1 \) and \(f_2 \) be functions from \(A \) to \(\mathbb{R} \). Then \(f_1 + f_2 \) and \(f_1 f_2 \) are also functions from \(A \) to \(\mathbb{R} \) defined by

\[
(f_1 + f_2)(x) = f_1(x) + f_2(x)
\]

\[
(f_1 f_2)(x) = f_1(x) f_2(x)
\]
Add and multiply real-valued functions

Definition
Let f_1 and f_2 be functions from A to \mathbb{R}. Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbb{R} defined by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

$$(f_1 f_2)(x) = f_1(x)f_2(x)$$

Example
Let $f_1(x) = x^2$ and $f_2(x) = x - x^2$. What are the functions $f_1 + f_2$ and $f_1 f_2$?

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = x^2 + x - x^2 = x$$

$$(f_1 f_2)(x) = f_1(x)f_2(x) = x^2(x - x^2) = x^3 - x^4$$
Image of a subset

Definition

Let $f : A \rightarrow B$ and $S \subseteq A$. The image of S:

$$f(S) = \{f(s) \mid s \in S\}$$
Image of a subset

Definition

Let \(f : A \rightarrow B \) and \(S \subseteq A \). The image of \(S \):

\[
f(S) = \{ f(s) \mid s \in S \}\]
Image of a subset

Definition

Let \(f : A \rightarrow B \) and \(S \subseteq A \). The image of \(S \):

\[
 f(S) = \{ f(s) \mid s \in S \}
\]

\[
 f(\{a, b, c, d\}) = \{x, y, z\}
\]
One-to-one

Definition
A function f is one-to-one or injective (đơn ánh) if and only if

$$\forall a \forall b \ (f(a) = f(b) \rightarrow a = b)$$
One-to-one

Definition
A function f is one-to-one or injective (đơn ánh) if and only if

$$\forall a \forall b \ (f(a) = f(b) \implies a = b)$$

- Is $f : \mathbb{Z} \to \mathbb{Z}, f(x) = x + 1$ one-to-one?
- Is $f : \mathbb{Z} \to \mathbb{Z}, f(x) = x^2$ one-to-one?
Onto

Definition

$f : A \rightarrow B$ is **onto** or **surjective** (*toàn ánh*) if and only if

\[\forall b \in B, \exists a \in A : f(a) = b \]

- Is $f : \mathbb{Z} \rightarrow \mathbb{Z}, f(x) = x + 1$ onto?
- Is $f : \mathbb{Z} \rightarrow \mathbb{Z}, f(x) = x^2$ onto?
One-to-one and onto (bijection)

Definition

\(f : A \rightarrow B \) is **bijective** (one-to-one correspondence) \((song \ ánh)\) if and only if \(f \) is **injective** and **surjective**

Let \(f \) be the function from \(\{a, bc, d\} \) to \(\{1, 2, 3, 4\} \) with \(f(a) = 4, f(b) = 2, f(c) = 1, f(d) = 3 \). Is \(f \) a bijection?
Example

4.12

Functions

Tran Vinh Tan

Contents

Functions

One-to-one and Onto Functions

Sequences and Summation

Recursion

https://fb.com/tailieudientucntt
Example
Example
Example

\begin{itemize}
\item \textbf{One-to-one and Onto Functions}
\item \textbf{Sequences and Summation}
\item \textbf{Recursion}
\end{itemize}

[Diagrams showing examples of one-to-one, onto, and other function types]
Example

- One-to-one and Onto Functions
- Sequences and Summation
- Recursion
Inverse function (Hàm ngược)

Definition

Let \(f : A \to B \) be a **bijection** then the inverse of \(f \) is the function \(f^{-1} : B \to A \) defined by

\[
\text{if } f(a) = b \text{ then } f^{-1}(b) = a
\]

A one-to-one correspondence is call invertible (khả nghịch) because we can define the inverse of this function.
Example

$A = \{a, b, c\}$ and $B = \{1, 2, 3\}$ with

- $f(a) = 2$
- $f(b) = 3$
- $f(c) = 1$

f is invertible and its inverse is

- $f^{-1}(1) = c$
- $f^{-1}(2) = a$
- $f^{-1}(3) = b$
Example

$A = \{a, b, c\}$ and $B = \{1, 2, 3\}$ with

$$f(a) = 2 \quad f(b) = 3 \quad f(c) = 1$$

f is invertible and its inverse is

$$f^{-1}(1) = c \quad f^{-1}(2) = a \quad f^{-1}(3) = b$$

Example

Let $f : \mathbb{R} \to \mathbb{R}$ with $f(x) = x^2$. Is f invertible?
Example

\[f : \mathbb{R} \rightarrow \mathbb{R} \]
\[f(x) = 2x + 1 \]

\[f^{-1} : \mathbb{R} \rightarrow \mathbb{R} \]
\[f^{-1}(x) = x - 1 \]
Example

\[f : \mathbb{R} \to \mathbb{R} \]

\[f(x) = 2x + 1 \]
Example

\(f : \mathbb{R} \to \mathbb{R} \)

\[f(x) = 2x + 1 \]

\(f^{-1} : \mathbb{R} \to \mathbb{R} \)

\[f^{-1}(x) = \frac{x - 1}{2} \]
Function Composition

Definition

Given a pair of functions $g : A \rightarrow B$ and $f : B \rightarrow C$. Then the composition (hợp thành) of f and g, denoted $f \circ g$ is defined by

$$f \circ g : A \rightarrow C$$

$$f \circ g(a) = f(g(a))$$
Example

CuuDuongThanCong.com

https://fb.com/tailieudientucntt
Example

\[X \rightarrow Y \rightarrow Z \]

1 \rightarrow D \rightarrow P
2 \rightarrow B \rightarrow Q
3 \rightarrow C \rightarrow R
A \rightarrow S
Example

\[X \rightarrow Y \rightarrow Z \]

\[X \rightarrow Y \rightarrow Z \]

\[1 \rightarrow D \rightarrow P \]
\[2 \rightarrow B \rightarrow Q \]
\[3 \rightarrow C \rightarrow R \]

\[1 \rightarrow D \rightarrow P \]
\[2 \rightarrow B \rightarrow Q \]
\[3 \rightarrow C \rightarrow R \]

CuuDuongThanCong.com

https://fb.com/tailieudientucntt
Example

cuu duong than cong . com

https://fb.com/tailieudientucntt
Graphs of Functions

Example

The graph of \(f(x) = x^2 \) from \(\mathbb{Z} \) to \(\mathbb{Z} \).
Example

The graph of $f(x) = x^2$ from \mathbb{Z} to \mathbb{Z}.

\[
\begin{align*}
(-3, 9) & \quad (3, 9) \\
(-2, 4) & \quad (2, 4) \\
(-1, 1) & \quad (1, 1) \\
(0, 0) & \\
\end{align*}
\]
Example

The graph of \(f(x) = x^2 \) from \(\mathbb{Z} \) to \(\mathbb{Z} \).

\[
\begin{align*}
(-3, 9) & \quad (3, 9) \\
(-2, 4) & \quad (2, 4) \\
(-1, 1) & \quad (1, 1) \\
(0, 0) &
\end{align*}
\]

Definition

Let \(f \) be a function from the set \(A \) to the set \(B \). The **graph** of the function \(f \) is the set of ordered pairs \(\{(a, b) \mid a \in A \text{ and } f(a) = b\} \).
Important Functions

Definition

Floor function \((hàm sàn)\) of \(x\) \((\lfloor x \rfloor)\): the largest integer \(\leq x\)
\[\frac{1}{2} = 0, \quad [3.1] = 3, \quad [7] = 7\]
Important Functions

Definition

Floor function (hàm sàn) of \(x \) ([\(x \)]): the largest integer \(\leq x \)

\[
\left\lfloor \frac{1}{2} \right\rfloor = 0, \quad \left\lfloor 3.1 \right\rfloor = 3, \quad \left\lfloor 7 \right\rfloor = 7
\]

Ceiling function (hàm trần) of \(x \) (\(\lceil x \rceil \)): the smallest integer \(\geq x \)

\[
\left\lceil \frac{1}{2} \right\rceil = 1, \quad \left\lceil 3.1 \right\rceil = 4, \quad \left\lceil 7 \right\rceil = 7
\]
Important Functions

Definition

Floor function *(hàm sàn)* of *x* ([*x*]): the largest integer ≤ *x*

\[
\left\lfloor \frac{1}{2} \right\rfloor = 0, \left\lfloor 3.1 \right\rfloor = 3, \left\lfloor 7 \right\rfloor = 7
\]

Ceiling function *(hàm trần)* of *x* ([*x*]): the smallest integer ≥ *x*

\[
\left\lceil \frac{1}{2} \right\rceil = 1, \left\lceil 3.1 \right\rceil = 4, \left\lceil 7 \right\rceil = 7
\]

Bảng: Properties *(n is an integer, x is a real number)*

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1a) [x] = n iff n ≤ x < n + 1</td>
<td></td>
</tr>
<tr>
<td>(1b) [x] = n iff n − 1 < x ≤ n</td>
<td></td>
</tr>
<tr>
<td>(1c) [x] = n iff x − 1 < n ≤ x</td>
<td></td>
</tr>
<tr>
<td>(1d) [x] = n iff x ≤ n < x + 1</td>
<td></td>
</tr>
</tbody>
</table>
Important Functions

Definition

Floor function \((hàm sàn)\) of \(x\) \(((x)\)): the largest integer \(\leq x\)

\[
\left\lfloor \frac{1}{2} \right\rfloor = 0, \left\lfloor 3.1 \right\rfloor = 3, \left\lfloor 7 \right\rfloor = 7
\]

Ceiling function \((hàm trần)\) of \(x\) \(((x)\)): the smallest integer \(\geq x\)

\[
\left\lceil \frac{1}{2} \right\rceil = 1, \left\lceil 3.1 \right\rceil = 4, \left\lceil 7 \right\rceil = 7
\]

Bảng: Properties \((n\) is an integer, \(x\) is a real number\))

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1a) [x] = (n) iff (n \leq x < n + 1)</td>
<td></td>
</tr>
<tr>
<td>(1b) [x] = (n) iff (n - 1 < x \leq n)</td>
<td></td>
</tr>
<tr>
<td>(1c) [x] = (n) iff (x - 1 < n \leq x)</td>
<td></td>
</tr>
<tr>
<td>(1d) [x] = (n) iff (x \leq n < x + 1)</td>
<td></td>
</tr>
<tr>
<td>(2) (x - 1 < \lfloor x \rfloor \leq \lfloor x \rfloor < x + 1)</td>
<td></td>
</tr>
</tbody>
</table>
Important Functions

Definition

Floor function (*hàm sàn*) of x ($\lfloor x \rfloor$): the largest integer $\leq x$

$\lfloor \frac{1}{2} \rfloor = 0$, $\lfloor 3.1 \rfloor = 3$, $\lfloor 7 \rfloor = 7$

Ceiling function (*hàm trần*) of x ($\lceil x \rceil$): the smallest integer $\geq x$

$\lceil \frac{1}{2} \rceil = 1$, $\lceil 3.1 \rceil = 4$, $\lceil 7 \rceil = 7$

Bảng: Properties (n is an integer, x is a real number)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1a)</td>
<td>$\lfloor x \rfloor = n$ iff $n \leq x < n + 1$</td>
</tr>
<tr>
<td>(1b)</td>
<td>$\lfloor x \rfloor = n$ iff $n - 1 < x \leq n$</td>
</tr>
<tr>
<td>(1c)</td>
<td>$\lfloor x \rfloor = n$ iff $x - 1 < n \leq x$</td>
</tr>
<tr>
<td>(1d)</td>
<td>$\lfloor x \rfloor = n$ iff $x \leq n < x + 1$</td>
</tr>
<tr>
<td>(2)</td>
<td>$x - 1 < \lfloor x \rfloor \leq \lfloor x \rfloor < x + 1$</td>
</tr>
<tr>
<td>(3a)</td>
<td>$\lceil -x \rceil = -\lfloor x \rfloor$</td>
</tr>
<tr>
<td>(3b)</td>
<td>$\lceil -x \rceil = -\lfloor x \rfloor$</td>
</tr>
</tbody>
</table>
Important Functions

Definition

Floor function (*hàm sàn*) of x ($\lfloor x \rfloor$): the largest integer $\leq x$

$\lfloor \frac{1}{2} \rfloor = 0$, $\lfloor 3.1 \rfloor = 3$, $\lfloor 7 \rfloor = 7$

Ceiling function (*hàm trần*) of x ($\lceil x \rceil$): the smallest integer $\geq x$

$\lceil \frac{1}{2} \rceil = 1$, $\lceil 3.1 \rceil = 4$, $\lceil 7 \rceil = 7$

<table>
<thead>
<tr>
<th>Properties (n is an integer, x is a real number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1a) $\lfloor x \rfloor = n$ iff $n \leq x < n + 1$</td>
</tr>
<tr>
<td>(1b) $\lfloor x \rfloor = n$ iff $n - 1 < x \leq n$</td>
</tr>
<tr>
<td>(1c) $\lfloor x \rfloor = n$ iff $x - 1 < n \leq x$</td>
</tr>
<tr>
<td>(1d) $\lfloor x \rfloor = n$ iff $x \leq n < x + 1$</td>
</tr>
<tr>
<td>(2) $x - 1 < \lfloor x \rfloor \leq \lfloor x \rfloor < x + 1$</td>
</tr>
<tr>
<td>(3a) $\lceil -x \rceil = -\lfloor x \rfloor$</td>
</tr>
<tr>
<td>(3b) $\lceil -x \rceil = -\lfloor x \rfloor$</td>
</tr>
<tr>
<td>(4a) $\lfloor x + n \rfloor = \lfloor x \rfloor + n$</td>
</tr>
<tr>
<td>(4b) $\lceil x + n \rceil = \lceil x \rceil + n$</td>
</tr>
</tbody>
</table>

https://fb.com/tailieudientucntt
Sequences

What are the rule of these sequences (dãy)?

Arithmetic sequence (cấp số cộng)

Example

\[1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots\]

\[a_n = \frac{1}{2^n} - 1\]

Geometric sequence (cấp số nhân)

Example

\[\{a_n\} = 5, 11, 17, 23, 29, 35, 41, 47, \ldots\]

\[a_n = 6n - 1\]

\[\{b_n\} = 1, 7, 25, 79, 241, 727, 2185, \ldots\]

\[b_n = 3^n - 2\]
Sequences

What are the rule of these sequences (dãy)?

Example

1, 3, 5, 7, 9, ...

\[a_n = 2^n - 1 \]

Arithmetic sequence (cấp số cộng)

Example

1, 1.5, 2, 2.5, 3, 3.5, ...

\[a_n = \frac{1}{2}n - 1 \]

Geometric sequence (cấp số nhân)

Example

\{a_n\} 5, 11, 17, 23, 29, 35, 41, ...

\[a_n = 6^n - 1 \]

\{b_n\} 1, 7, 25, 79, 241, 727, 2185, ...

\[b_n = 3^n - 2 \]
Sequences

What are the rule of these sequences (dãy)?

Example

\[1, 3, 5, 7, 9, \ldots \quad a_n = 2n - 1 \]
Sequences

What are the rule of these sequences (dãy)?

Example

1, 3, 5, 7, 9, ... \(a_n = 2n - 1 \)

Example

1, \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \)
Sequences

What are the rule of these sequences (dãy)?

Example

1, 3, 5, 7, 9, ... \(a_n = 2n - 1 \)

Example

1, \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \) \(a_n = \frac{1}{2^{n-1}} \)
Sequences

What are the rule of these sequences (dãy)?

Example

1, 3, 5, 7, 9, ... \(a_n = 2n - 1 \)

Arithmetic sequence (cấp số cộng)

Example

1, \(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \) \(a_n = \frac{1}{2^{n-1}} \)
Sequences

What are the rule of these sequences (dãy)?

Example

1, 3, 5, 7, 9, . . . \(a_n = 2n - 1 \)

Arithmetic sequence (cấp số cộng)

Example

1, \(\frac{1}{2} \), \(\frac{1}{4} \), \(\frac{1}{8} \), \(\frac{1}{16} \), . . . \(a_n = \frac{1}{2^{n-1}} \)

Geometric sequence (cấp số nhân)

https://fb.com/tailieudientucntt
Sequences

What are the rule of these sequences (dãy)?

Example

1, 3, 5, 7, 9, . . . \(a_n = 2n - 1 \)

Arithmetic sequence (cấp số cộng)

Example

1, \(\frac{1}{2} \), \(\frac{1}{4} \), \(\frac{1}{8} \), \(\frac{1}{16} \), . . . \(a_n = \frac{1}{2^{n-1}} \)

Geometric sequence (cấp số nhân)

Example

\(\{a_n\} \) 5, 11, 17, 23, 29, 35, 41, 47, . . .
Sequences

What are the rule of these sequences (dãy)?

Example

1, 3, 5, 7, 9, … \(a_n = 2n - 1 \)

Arithmetic sequence (cấp số cộng)

Example

1, \(\frac{1}{2} \), \(\frac{1}{4} \), \(\frac{1}{8} \), \(\frac{1}{16} \), … \(a_n = \frac{1}{2^{n-1}} \)

Geometric sequence (cấp số nhân)

Example

\(\{a_n\} \) 5, 11, 17, 23, 29, 35, 41, 47, … \(a_n = 6n - 1 \)
Sequences

What are the rule of these sequences (dãy)?

Example

1, 3, 5, 7, 9, ... \(a_n = 2n - 1\)

Arithmetic sequence (cấp số cộng)

Example

1, \(\frac{1}{2}\), \(\frac{1}{4}\), \(\frac{1}{8}\), \(\frac{1}{16}\), ... \(a_n = \frac{1}{2^n-1}\)

Geometric sequence (cấp số nhân)

Example

\(\{a_n\}\) 5, 11, 17, 23, 29, 35, 41, 47, ... \(a_n = 6n - 1\)

\(\{b_n\}\) 1, 7, 25, 79, 241, 727, 2185, ...

https://fb.com/tailieudientucntt
Sequences

What are the rule of these sequences (dãy)?

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
</table>
| 1, 3, 5, 7, 9, . . .
$a_n = 2n - 1$
Arithmetic sequence (cấp số cộng) |
| 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$, . . .
$a_n = \frac{1}{2^{n-1}}$
Geometric sequence (cấp số nhân) |
| $\{a_n\}$
5, 11, 17, 23, 29, 35, 41, 47, . . .
$a_n = 6n - 1$ |
| $\{b_n\}$
1, 7, 25, 79, 241, 727, 2185, . . .
$b_n = 3^n - 2$ |
Recurrence Relations

Example

\[\{a_n\} \quad 5, 11, 17, 23, 29, 35, 41, 47, \ldots \]
Example

\[\{a_n\} \quad 5, 11, 17, 23, 29, 35, 41, 47, \ldots \]

\[a_n = a_{n-1} + 6 \quad \text{for} \quad n = 2, 3, 4, \ldots \quad \text{and} \quad a_1 = 5 \]
Recurrence Relations

Example

\(\{a_n\} \) 5, 11, 17, 23, 29, 35, 41, 47, . . .
\(a_n = a_{n-1} + 6 \) for \(n = 2, 3, 4, . . . \) and \(a_1 = 5 \)

Recurrence relations: công thức truy hồi
Recurrence Relations

Example

\{a_n\} \quad 5, 11, 17, 23, 29, 35, 41, 47, \ldots \\
a_n = a_{n-1} + 6 \text{ for } n = 2, 3, 4, \ldots \text{ and } a_1 = 5

Recurrence relations: công thức truy hồi

Definition (Fibonacci Sequence)

Initial condition: \(f_0 = 0 \) and \(f_1 = 1 \)

\(f_n = f_{n-1} + f_{n-2} \text{ for } n = 2, 3, 4, \ldots \)
Recurrence Relations

Example

\{a_n\} 5, 11, 17, 23, 29, 35, 41, 47, \ldots

\[a_n = a_{n-1} + 6\text{ for } n = 2, 3, 4, \ldots\text{ and } a_1 = 5\]

Recurrence relations: công thức truy hồi

Definition (Fibonacci Sequence)

Initial condition: \(f_0 = 0\) and \(f_1 = 1\)

\[f_n = f_{n-1} + f_{n-2}\text{ for } n = 2, 3, 4, \ldots\]

Example

Find the Fibonacci numbers \(f_2, f_3, f_4, f_5\) and \(f_6\)

\[f_2 = f_1 + f_0 = 1 + 0 = 1\]
\[f_3 = f_2 + f_1 = 1 + 1 = 2\]
\[f_4 = f_3 + f_2 = 2 + 1 = 3\]
\[f_5 = f_4 + f_3 = 3 + 2 = 5\]
\[f_6 = f_5 + f_4 = 5 + 3 = 8\]

https://fb.com/tailieudientucntt
Recurrence Relations

Example

\[\{a_n\} \quad 5, 11, 17, 23, 29, 35, 41, 47, \ldots \]
\[a_n = a_{n-1} + 6 \text{ for } n = 2, 3, 4, \ldots \text{ and } a_1 = 5 \]

Recurrence relations: công thức truy hồi

Definition (Fibonacci Sequence)

Initial condition: \(f_0 = 0 \) and \(f_1 = 1 \)
\[f_n = f_{n-1} + f_{n-2} \text{ for } n = 2, 3, 4, \ldots \]

Example

Find the Fibonacci numbers \(f_2, f_3, f_4, f_5 \) and \(f_6 \)
\[f_2 = f_1 + f_0 = 1 + 0 = 1 \]
\[f_3 = f_2 + f_1 = 1 + 1 = 2 \]
\[f_4 = f_3 + f_2 = 2 + 1 = 3 \]
\[f_5 = f_4 + f_3 = 3 + 2 = 5 \]
\[f_6 = f_5 + f_4 = 5 + 3 = 8 \]
Exercise (1)

Initial deposit: $10,000
Interest: 11%/year, compounded annually (lãi suất kép)

After 30 years, how much do you have in your account?
Exercise (1)

Initial deposit: $10,000
Interest: 11%/year, compounded annually (lãi suất kép)

After 30 years, how much do you have in your account?

Solution:
Let P_n be the amount in the account after n years. The sequence \(\{P_n\}\) satisfies the recurrence relation
\[
P_n = P_{n-1} + 0.11P_{n-1} = (1.11)P_{n-1}.
\]
The initial condition is $P_0 = 10,000$
Exercise (1)

Initial deposit: $10,000
Interest: 11%/year, compounded annually (lãi suất kép)

After 30 years, how much do you have in your account?

Solution:
Let P_n be the amount in the account after n years. The sequence \{P_n\} satisfies the recurrence relation

\[P_n = P_{n-1} + 0.11P_{n-1} = (1.11)P_{n-1}. \]

The initial condition is $P_0 = 10,000$

Step 1. Solve the recurrence relation (iteration technique)
\[P_1 = (1.11)P_0 \]
\[P_2 = (1.11)P_1 = (1.11)^2P_0 \]
\[P_3 = (1.11)P_2 = (1.11)^3P_0 \]
\[\vdots \]
\[P_n = (1.11)P_{n-1} = (1.11)^nP_0. \]
Exercise (1)

Initial deposit: $10,000
Interest: 11%/year, compounded annually (lãi suất kép)

After 30 years, how much do you have in your account?

Solution:
Let P_n be the amount in the account after n years. The sequence \{ P_n \} satisfies the recurrence relation

\[P_n = P_{n-1} + 0.11P_{n-1} = (1.11)P_{n-1} \]

The initial condition is $P_0 = 10,000$

Step 1. Solve the recurrence relation (iteration technique)

\[P_1 = (1.11)P_0 \]
\[P_2 = (1.11)P_1 = (1.11)^2P_0 \]
\[P_3 = (1.11)P_2 = (1.11)^3P_0 \]
\[\vdots \]
\[P_n = (1.11)P_{n-1} = (1.11)^nP_0. \]

Step 2. Calculate
\[P_{30} = (1.11)^{30}10,000 = $228,922.97. \]
Exercise (2)

What is the 2012th number in the sequence \(\{x_n\} \): 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, \ldots

Solution:
In this sequence, integer 1 appears once, the integer 2 appears twice, the integer 3 appears three times, and so on. Therefore integer \(n \) appears \(n \) times in the sequence.

We can prove that \(\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \) and can easily calculate that \(\sum_{i=1}^{62} i = 1953 \) so the next 63 numbers (until 2016) is 63.

Therefore, 2012th number in the sequence is 63.
Exercise (2)

What is the 2012th number in the sequence \(\{x_n\} \): 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, \ldots

Solution:

In this sequence, integer 1 appears once, the integer 2 appears twice, the integer 3 appears three times, and so on. Therefore integer \(n \) appears \(n \) times in the sequence.

We can prove that (try it!)

\[
\sum_{i=1}^{n} i = 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}
\]

and can easily calculate that

\[
\sum_{i=1}^{62} i = 1953
\]

so the next 63 numbers (until 2016) is 63.

Therefore, 2012th number in the sequence is 63.
Theorem

If a and r are real numbers and $r \neq 0$, then

$$\sum_{j=0}^{n} ar^j = \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 1 \\ (n+1)a & \text{if } r = 1. \end{cases}$$
Theorem

If a and r are real numbers and $r \neq 0$, then

$$
\sum_{j=0}^{n} ar^j = \begin{cases}
\frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 1 \\
(n+1)a & \text{if } r = 1.
\end{cases}
$$

증명.

Let $S_n = \sum_{j=0}^{n} ar^j$.

$$
rS_n = r \sum_{j=0}^{n} ar^j = \sum_{j=0}^{n} ar^{j+1} = \sum_{k=1}^{n+1} ar^{k} = \left(\sum_{k=0}^{n} ar^{k} \right) + (ar^{n+1} - a) = S_n + (ar^{n+1} - a)
$$

Solving for S_n shows that if $r \neq 1$, then $S_n = \frac{ar^{n+1}-a}{r-1}$

If $r = 1$, then $S_n = \sum_{j=0}^{n} a = (n+1)a$
Recursion

Definition (Recurrence Relation)

An equation that *recursively defines* a sequence.
Recursion

Definition (Recurrence Relation)
An equation that \textit{recursively defines} a sequence.

Definition (Recursion (đệ quy))
The act of defining an object (usually a function) in terms of that object itself.
Recursion

Definition (Recurrence Relation)

An equation that recursively defines a sequence.

Definition (Recursion (đệ quy))

The act of defining an object (usually a function) in terms of that object itself.
Recursive Algorithms

Definition

An algorithm is called **recursive** if it solves a problem by reducing it to an instance of the same problem with smaller input.
Recursive Algorithms

Definition
An algorithm is called **recursive** if it solves a problem by reducing it to an instance of the same problem with smaller input.

Example
Give a recursive algorithm for computing $n!$, where n is a nonnegative integer.

procedure factorial (n: nonnegative integer)
if $n = 0$
then return 1
else return $n \cdot$ factorial ($n - 1$)
{output is $n!$}
Recursive Algorithms

Definition
An algorithm is called *recursive* if it solves a problem by reducing it to an instance of the same problem with smaller input.

Example
Give a recursive algorithm for computing $n!$, where n is a nonnegative integer.

Solution. We base on the recursive definition of $n!$:
$n! = n \cdot (n - 1)!$ and $0! = 1$.
Recursive Algorithms

Definition
An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input.

Example
Give a recursive algorithm for computing $n!$, where n is a nonnegative integer.

Solution. We base on the recursive definition of $n!$:

$$n! = n \cdot (n - 1)! \text{ and } 0! = 1.$$

procedure factorial(n: nonnegative integer)
if $n = 0$ then return 1
else return $n \cdot \text{factorial}(n - 1)$
{output is $n!$}
Algorithms for Fibonacci Numbers

Contents

- Functions
 - One-to-one and Onto Functions
 - Sequences and Summation
 - Recursion

4.27 Algorithms for Fibonacci Numbers

Recursive Algorithm

```plaintext
procedure fibonacci(n: nonnegative integer)
if n = 0 then return 0
else if n = 1 then return 1
else return fibonacci(n-1) + fibonacci(n-2)
{output is fibonacci(n)}
```

Iterative Algorithm

```plaintext
procedure iterative fibonacci(n: nonnegative integer)
if n = 0 then return 0
else
  x := 0
  y := 1
  for i := 1 to n-1
    z := x + y
    x := y
    y := z
  return y
{output is the nth Fibonacci number}
```

CuuDuongThanCong.com

https://fb.com/tailieudientucntt
Algorithms for Fibonacci Numbers

Recursive Algorithm

procedure fibonacci(n: nonnegative integer)
if \(n = 0 \) then return 0
else if \(n = 1 \) then return 1
else return fibonacci(n-1) + fibonacci(n-2)
{output is fibonacci(n)}
Algorithms for Fibonacci Numbers

Recursive Algorithm

procedure fibonacci(n: nonnegative integer)
if $n = 0$ then return 0
else if $n = 1$ then return 1
else return fibonacci($n-1$) + fibonacci($n-2$)
{output is fibonacci(n)}

Iterative Algorithm

procedure iterative fibonacci(n: nonnegative integer)
if $n = 0$ then return 0
else
$x := 0$
$y := 1$
for $i := 1$ to $n - 1$
 $z := x + y$
 $x := y$
 $y := z$
return y
{output is the nth Fibonacci number}
Tower of Hanoi

There is a tower in Hanoi that has three pegs mounted on a board together with 64 gold disks of different sizes. Initially, these disks are placed on the first peg in order of size, with the largest on the bottom.
Tower of Hanoi

There is a tower in Hanoi that has three pegs mounted on a board together with 64 gold disks of different sizes.

Initially, these disks are placed on the first peg in order of size, with the largest on the bottom.

The rules:
1. Move one at a time from one peg to another
2. A disk is never placed on top of a smaller disk
Tower of Hanoi

There is a tower in Hanoi that has three pegs mounted on a board together with 64 gold disks of different sizes.

Initially, these disks are placed on the first peg in order of size, with the largest on the bottom.

The rules:
1. Move one at a time from one peg to another
2. A disk is never placed on top of a smaller disk

Goals: all the disks on the third peg in order of size.
Tower of Hanoi

There is a tower in Hanoi that has three pegs mounted on a board together with 64 gold disks of different sizes.

Initially, these disks are placed on the first peg in order of size, with the largest on the bottom.

The rules:

1. Move one at a time from one peg to another
2. A disk is never placed on top of a smaller disk

Goals: all the disks on the third peg in order of size.

The myth says that the world will end when they finish the puzzle.
Tower of Hanoi – 64 Discs
Tower of Hanoi – 1 Disc
Tower of Hanoi – 1 Disc

Moved disc from peg 1 to peg 3.
Tower of Hanoi – 1 Disc
Tower of Hanoi – 2 Discs
Tower of Hanoi – 2 Discs

Moved disc from peg 1 to peg 2.
Tower of Hanoi – 2 Discs

Moved disc from peg 1 to peg 3.
TOWER OF HANOI – 2 DISCS

Moved disc from peg 2 to peg 3.
Tower of Hanoi – 2 Discs
Tower of Hanoi – 3 Discs
Tower of Hanoi – 3 Discs

Moved disc from peg 1 to peg 3.
Tower of Hanoi – 3 Discs

Moved disc from peg 1 to peg 2.
Tower of Hanoi – 3 Discs

Moved disc from peg 3 to peg 2.
Tower of Hanoi – 3 Discs

Moved disc from peg 1 to peg 3.
Tower of Hanoi – 3 Discs

Moved disc from peg 2 to peg 1.
Tower of Hanoi – 3 Discs

Moved disc from peg 2 to peg 3.
Tower of Hanoi – 3 Discs

Moved disc from peg 1 to peg 3.
Tower of Hanoi – 3 Discs
Tower of Hanoi – 4 Discs
Moved disc from peg 1 to peg 2.
Tower of Hanoi – 4 Discs

Moved disc from peg 1 to peg 3.
Tower of Hanoi – 4 Discs

Moved disc from peg 2 to peg 3.
Tower of Hanoi – 4 Discs

Moved disc from peg 1 to peg 2.
Tower of Hanoi – 4 Discs

Moved disc from peg 3 to peg 1.
Tower of Hanoi – 4 Discs

Moved disc from peg 3 to peg 2.
Tower of Hanoi – 4 Discs

Moved disc from peg 1 to peg 2.
Tower of Hanoi – 4 Discs

Moved disc from peg 1 to peg 3.
Tower of Hanoi – 4 Discs

Moved disc from peg 2 to peg 3.
Tower of Hanoi – 4 Discs

Moved disc from peg 2 to peg 1.
Tower of Hanoi – 4 Discs

Moved disc from peg 3 to peg 1.
Tower of Hanoi – 4 Discs

Moved disc from peg 2 to peg 3.
Tower of Hanoi – 4 Discs

Moved disc from peg 1 to peg 2.
Moved disc from peg 1 to peg 3.
Tower of Hanoi – 4 Discs

Moved disc from peg 2 to peg 3.
Tower of Hanoi – 4 Discs
Tower of Hanoi

Algorithm

```python
procedure hanoi(n, A, B, C)
if \( n = 1 \) then move the disk from A to C
else
  call hanoi(n − 1, A, C, B)
  move disk \( n \) from A to C
  call hanoi(n − 1, B, A, C)
```

Recurrence Relation

\[
H(n) = \begin{cases}
 1 & \text{if } n = 1 \\
 2H(n − 1) + 1 & \text{if } n > 1.
\end{cases}
\]

Recurrence Solving

\[
H(n) = 2^n − 1
\]

If one move takes 1 second, for \(n = 64 \)

\[
2^{64} − 1 \approx 2 \times 10^{19} \text{ sec}
\approx 500 \text{ billion years}!
\]