AVL Tree

DEFINITION:

AVL Tree is:

• A Binary Search Tree,

• in which the heights of the left and right subtrees of the root differ by at most 1, and

• the left and right subtrees are again AVL trees.
AVL Tree

The name comes from the discoverers of this method, G.M. Adel'son-Vel'skii and E.M. Landis.

The method dates from 1962.
Balance factor

Balance factor:

- **left_higher**: \(H_L = H_R + 1 \)
- **equal_height**: \(H_L = H_R \)
- **right_higher**: \(H_R = H_L + 1 \)

\((H_L, H_R: \text{the height of left and right subtree})\)

In C++:

```cpp
enum Balance_factor {left_higher, equal_height, right_higher};
```
AVL Trees and non-AVL Trees

AVL trees

cuu duong than cong . com

non-AVL trees

cuu duong than cong . com

CuuDuongThanCong.com

https://fb.com/tailieudientucntt
Linked AVL Tree

AVL_Node
- data <DataType>
- left <pointer>
- right <pointer>
- balance <Balance_factor>

End AVL_Node

AVL_Tree
- root <pointer>

End AVL_Tree
Insertion into an AVL tree
Insertion into an AVL tree

- Follow the usual BST insertion algorithm: insert the new node into the empty left or right subtree of a parent node as appropriate.

- We use a reference parameter `taller` of the `recursive_Insert` function to show if the height of a subtree, for which the recursive function is called, has been increased.

- At the stopping case of recursive, the empty subtree becomes a tree with one node for new data, `taller` is set to TRUE.
Insertion into an AVL tree

Consider the subtree, for which the recursive function is called,

- While *taller* is TRUE, for each node on the path from the subtree's parent to the root of the tree, do the following steps.

 a) If the subtree was the shorter: its parent's balance factor must be changed, but the height of parent tree is unchanged. *taller* becomes FALSE.

 b) If two subtree had the same height, its parent's balance factor must be changed, the height of parent tree increases by 1. *taller* remains TRUE.

 c) If the subtree was the higher subtree: only in this case, the definition of AVL is violated at the parent node, rebalancing must be done. *taller* becomes FALSE.
Insertion into an AVL tree

- When taller becomes FALSE, the algorithm terminates.
- When rebalancing must be done, the height of the subtree always returned to its original value, so taller always becomes FALSE!
Insertion into an AVL tree
Insertion into an AVL tree

Case b

taller = TRUE
Insertion into an AVL tree

```
m:
  /  
 /   /
 e   k
  /  
 a   p
  /
 m
```

Case b

taller = TRUE

CuuDuongThanCong.com
https://fb.com/tailieudientucntt
Insertion into an AVL tree

Case b

taller = TRUE
Insertion into an AVL tree

taller = TRUE

Case b
Insertion into an AVL tree

Case b

taller = TRUE
Insertion into an AVL tree

taller = TRUE

Case b
Insertion into an AVL tree

u:

k

e

a

p

m

t
Insertion into an AVL tree

Case b

taller = TRUE
Insertion into an AVL tree

Case b

taller = TRUE
Insertion into an AVL tree

Case a

taller = TRUE
Insertion into an AVL tree

taller = FALSE
Case a
Insertion into an AVL tree
Insertion into an AVL tree

Case b

taller = TRUE
Insertion into an AVL tree

Case b

taller = TRUE

u:
Insertion into an AVL tree

Case c
Insertion into an AVL tree

Case c

taller = TRUE
Rebalancing at the node violating AVL definition

u: Single Rotation Case c

taller = TRUE

Single Rotation
Rebalancing at the node violating AVL definition

Case c

taller = TRUE

taller = FALSE

Single Rotation

https://fb.com/tailieudientucntt
Insertion into an AVL tree

```plaintext
p:
- k
  \ / 
  m  u
- t
  -
  - v
```
Insertion into an AVL tree

Case b

taller = TRUE
Insertion into an AVL tree

Case b

taller = TRUE
Insertion into an AVL tree

Case b

taller = TRUE

https://fb.com/tailieudientucntt
Insertion into an AVL tree

Case b

taller = TRUE
Insertion into an AVL tree

Case c

taller = TRUE
Rebalancing at the node violating AVL definition

Double Rotation
Rebalancing at the node violating AVL definition

Case c

Double Rotation

taller = TRUE

taller = TRUE

taller = FALSE
Insert Node into AVL Tree

<ErrorCode> Insert (val DataIn <DataType>)
Inserts a new node into an AVL tree.

Post If the key of DataIn already belongs to the AVL tree, duplicate_error is returned. Otherwise, DataIn is inserted into the tree in such a way that the properties of an AVL tree are preserved.

Return duplicate_error or success.
Uses recursive_Insert.

1. taller <boolean> // Has the tree grown in height?
2. return recursive_Insert (root, DataIn, taller)
Recursive Insert

<ErrorCode> recursive_Insert (ref subroot <pointer>, val DataIn <DataType>, ref taller <boolean>)

Inserts a new node into an AVL tree.

Pre subroot points to the root of a tree/subtree.
DataIn contains data to be inserted into the subtree.

Post If the key of DataIn already belongs to the subtree, duplicate_error is returned. Otherwise, DataIn is inserted into the subtree in such a way that the properties of an AVL tree are preserved.
If the subtree is increased in height, the parameter taller is set to TRUE; otherwise it is set to FALSE.

Return duplicate_error or success.

Uses recursive_Insert, left_balance, right_balance functions.
Recursive Insert (cont.)

1. result = success

2. if (subroot is NULL)
 1. Allocate subroot
 2. subroot ->data = DataIn
 3. taller = TRUE

3. else if (DataIn = subroot ->data)
 1. result = duplicate_error
 2. taller = FALSE

4. else if (DataIn < subroot ->data)
Recursive Insert (cont.)

4. else if (DataIn < subroot ->data) // Insert in the left subtree
 1. result = recursive_Insert(subroot->left, DataIn, taller)
 2. if (taller = TRUE)
 1. if (balance of subroot = left_higher)
 1. left_balance (subroot)
 2. taller = FALSE
 // Rebalancing always shortens the tree.
 2. else if (balance of subroot = equal_height)
 1. subroot->balance = left_higher
 3. else if (balance of subroot = right_higher)
 1. subroot->balance = equal_height
 2. taller = FALSE

Case a

Case b

Case c
4. else // (DataIn > subroot ->data) Insert in the right subtree

1. result = recursive_Insert(subroot->right, DataIn, taller)
2. if (taller = TRUE)

 1. if (balance of subroot = left_higher)
 1. subroot->balance = equal_height
 2. taller = FALSE

 2. else if (balance of subroot = equal_height)
 1. subroot->balance = right_higher

 3. else if (balance of subroot = right_higher)
 1. right_balance (subroot)
 2. taller = FALSE

 // Rebalancing always shortens the tree.

1. return result

End recursive_Insert
Rotation of an AVL Tree

1. \(\text{right_tree} = \text{subroot} \rightarrow \text{right} \)
2. \(\text{subroot} \rightarrow \text{right} = \text{right_tree} \rightarrow \text{left} \)
3. \(\text{right_tree} \rightarrow \text{left} = \text{subroot} \)
4. \(\text{subroot} = \text{right_tree} \)

Total height = \(h + 3 \)
Total height = \(h + 2 \)
Rotation of an AVL Tree

<void> rotate_left (ref subroot <pointer>)

Pre subroot is not NULL and points to the subtree of the AVL tree. This subtree has a nonempty right subtree.

Post subroot is reset to point to its former right child, and the former subroot node is the left child of the new subroot node.

1. right_tree = subroot->right
2. subroot->right = right_tree->left
3. right_tree->left = subroot
4. subroot = right_tree

End rotate_left
One of T_2 or T_3 has height h.

Total height = $h + 3$
Double Rotate

The new balance factors for subroot and right_tree depend on the previous balance factor for subtree

<table>
<thead>
<tr>
<th>old sub_tree</th>
<th>new subroot</th>
<th>new right_tree</th>
<th>new sub_tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>/</td>
<td>-</td>
<td>\</td>
<td>-</td>
</tr>
<tr>
<td>\</td>
<td>/</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
right_balance function

<void> right_balance (ref subroot <pointer>)

Pre subroot points to a subtree of an AVL tree, doubly unbalanced on the right.

Post The AVL properties have been restored to the subtree.

Uses rotate_right, rotate_left functions.
right_balance function (cont.)

1. right_tree = subroot->right

2. if (balance of right_tree = right_higher)
 1. subroot->balance = equal_height
 2. right_tree->balance = equal_height
 3. rotate_left (subroot)

3. if (balance of right_tree = equal_height) // impossible case
right_balance function (cont.)

4. if (balance of right_tree = left_higher)
 1. subtree = right_tree->left
 2. subtree->balance = equal_height
 3. rotate_right (right_tree)
 4. rotate_left (subroot)
right_balance function (cont.)

5. if (balance of subtree = equal_height)
 1. subroot->balance = equal_height
 2. right_tree->balance = equal_height

6. else if (balance of subtree = left_higher)
 1. subroot->balance = equal_height
 2. right_tree->balance = right_higher

7. else // (balance of subtree = right_higher)
 1. subroot->balance = left_higher
 2. right_tree->balance = equal_height

End right_balance
Removal of a node

- Reduce the problem to the case when the node \(x \) to be removed has at most one child.

- We use a parameter \(\text{shorter} \) to show if the height of a subtree has been shortened.

- While \(\text{shorter} \) is TRUE, do the following steps for each node \(p \) on the path from the parent of \(x \) to the root of the tree.

- When \(\text{shorter} \) becomes FALSE, the algorithm terminates.
Removal of a node

- **Case 1**: Node \(p \) has balance factor **equal**. So only this balance factor must be changed. The height of \(p \) is unchanged. shorter becomes FALSE.
Removal of a node

- **Case 2:** The balance factor of p is **not equal**, the taller subtree was shortened.

So the balance factor must be changed.
The height of p is decreased.
shorter remains TRUE.
Removal of a node

• **Case 3**: The balance factor of p is **not equal**, the shorter subtree was shortened.

 So *AVL definition is violated at p*. Rebalancing must be done.

 Let q be the root of the taller subtree of p.

Case 3a: The balance factor of q is **equal**.

 So **single rotation** needs to do. shorter becomes FALSE.
Removal of a node

Case 3b: The balance factor of q **is the same** as that of p.

So **single rotation** needs to do.

Balance factors of p and q become equal.

shorter remains TRUE.
Removal of a node

Case 3c: The balance factor of q and p are opposite.

Double rotation must be done (first around q, then around p).

The balance factor of the new root is equal.

Other balance factors are set as appropriate.

shorter remains TRUE.
Removal of a node

Delete p
Removal of a node

Delete p
Removal of a node

Delete p

Case 2

shorter = TRUE
Removal of a node

Delete p

Case 2

shorter = TRUE
Removal of a node

Delete p

Case 3b

shorter = TRUE
Removal of a node

Delete \(p \)

Case 3b
Removal of a node

Delete p

Case 3b

shorter = TRUE
Removal of a node

Delete p

Case 3c

shorter = TRUE
Removal of a node

Delete p

Case 3c

shorter = TRUE
Removal of a node

Delete p

Case 3c

shorter = TRUE
Removal of a node

Delete p

Case 3c

shorter = TRUE
Analysis of AVL Tree

- The number of recursive calls to insert a new node can be as large as the height of the tree.

- At most one (single or double) rotation will be done per insertion.

- A rotation *improves the balance of the tree*, so later insertions are less likely to require rotations.
Analysis of AVL Tree

- It is very difficult to find the height of the average AVL tree, but the worst case is much easier.

- The worst-case behavior of AVL trees is essentially no worse than the behaviour of random BST.

- The average behaviour of AVL trees is much better than that of random BST, almost as good as that which could be obtained from a perfectly balanced tree.
Analysis of AVL Tree

- To find the maximum height of AVL tree with \(n \) nodes, we instead find the minimum number of nodes that an AVL tree of height \(h \) can have.

- \(F_h \): an AVL tree of height \(h \) with minimum number of nodes.
- \(F_L \): a left subtree of height \(h_L = h-1 \) with minimum number of nodes.
- \(F_R \): a right subtree of height \(h_R = h-2 \) with minimum number of nodes.
Built sparse AVL trees
Fibonacci trees

- Trees, as sparse as possible for AVL tree, are call Fibonacci trees.
Analysis of AVL Tree

If $|T|$ is the number of nodes in tree T, we have:

$$|F_h| = |F_{h-1}| + |F_{h-2}| + 1,$$

where $|F_0| = 1$ and $|F_1| = 2$.

And we can calculate

$$h \approx 1.44 \lg |F_h|.$$
Analysis of AVL Tree

- The sparsest possible AVL tree with n nodes has height about 1.44 $\lg n$ compared to:
 - A perfectly balanced BST with n nodes has height about $\lg n$.
 - A random BST, on average, has height about 1.39 $\lg n$.
 - A degenerate BST has height as large as n.
Analysis of AVL Tree

- Hence the algorithm for manipulating AVL trees are guaranteed to take no more than about 44 percent more time than the optimum.

- In practice, AVL trees do much better than this on average, perhaps as small as $\lg n + 0.25$.