Intro to Cryptography

Classical Ciphers

Lectured by Van Nguyen - HUST
Shift cipher (additive cipher)

- Key Space: [1 .. 25]
- Encryption given a key K:
 - each letter in the plaintext P is replaced with the K’th letter following corresponding number (shift right):
 - Another way: \(Y = X \oplus K \) \(\Rightarrow \) additive cipher
- Decryption given K:
 - shift left

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

P = CRYPTOGRAPHYISFUN
K = 11
C = NCJAVZRCLASJTDQFY
Shift Cipher: Cryptanalysis

- Easy, just do exhaustive search
 - key space is small (<= 26 possible keys).
 - once K is found, very easy to decrypt
General Mono-alphabetical Substitution Cipher

- The key space: all permutations of $\Sigma = \{A, B, C, \ldots, Z\}$
- Encryption given a key π:
 - each letter X in the plaintext P is replaced with $\pi(X)$
- Decryption given a key π:
 - each letter Y in the ciphertext P is replaced with $\pi^{-1}(Y)$

- **Example:**

 $A B C D E F G H I J K L M N O P Q R S T U V W X Y Z$
 $\pi = B A D C Z H W Y G O Q X S V T R N M S K J I P F E U$

 BECAUSE \rightarrow AZDBJSZ
Looks secure, early days

- Exhaustive search is infeasible
 - key space size is $26! \approx 4 \times 10^{26}$
- Dominates the art of secret writing throughout the first millennium A.D.
- Thought to be unbreakable by many back then
Cryptanalysis of Substitution Ciphers: Frequency Analysis

- Each language has certain features:
 - frequency of letters, or of groups of two or more letters.
- Substitution ciphers preserve the mentioned language features \(\implies \) vulnerable to frequency analysis attacks
Substitution Ciphers: Cryptanalysis

- The number of different ciphertext characters or combinations are counted to determine the frequency of usage.
- The cipher text is examined for patterns, repeated series, and common combinations.
- Replace ciphertext characters with possible plaintext equivalents using known language characteristics.
- Example:
 THIS IS A PROPER SAMPLE FOR ENGLISH TEXT. THE FREQUENCIES OF LETTERS IN THIS SAMPLE IS NOT UNIFORM AND VARY FOR DIFFERENT CHARACTERS. IN GENERAL THE MOST FREQUENT LETTER IS E FOLLOWED BY A SECOND GROUP. IF WE TAKE A CLOSER LOOK WE WILL NOTICE THAT FOR BIGRAMS AND TRIGRAMS THE NONUNIFORM IS EVEN MORE.
 - Observations: $f_x=1$ và $f_A=15$.
Substitution Ciphers: Cryptanalysis

- The letters in the English alphabet can be divided into 5 groups of similar frequencies
 1. e
 2. t,a,o,i,n,s,h,r
 3. d,l
 4. c,u,m,w,f,g,y,p,b
 5. v,k,j,x,q,z

- Some frequently appearing bigrams or trigrams
 Th, he, in, an, re, ed, on, es, st, en at, to
 The, ing, and, hex, ent, tha, nth, was eth, for, dth.
Example 0.11 *What is the key?*

Algorithm: key phrase substitution

YKHLBA JCZ SVIJ JZB TZVHI JCZ VHJ DR IZXKHLBA VSS RDHEI DR YVJV LBXS KYLBA YLALJVS IFZZXC CVI LEFH DNZY EVBL RDSY JCZ FHLEVHT HZV IDB RDH JCLI CVI WZZB JCZ VYNZBJ DR ELXHDZSZXJHDBLXI JCZ XDEFSZQLJT DR JCZ RKBXJLDBI JCV J XV BDP WZ FZHRDHEZY WT JCZ EVXCLBZ CVI HLIZB YHVEVJLXVSST VI V HXXIKSJ DR JCLI HZXZBJ YZNZXDFEZBJ LB JZXCBDSDAT EVBT DR JCZ XLF CZH ITIJZEIJCVJ PZH DBXZ XDBILYXHZYIZKHZ VHZB DP WHZVMVWSZ
<table>
<thead>
<tr>
<th>Letter:</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency:</td>
<td>5</td>
<td>24</td>
<td>19</td>
<td>23</td>
<td>12</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Letter:</td>
<td>H</td>
<td>I</td>
<td>J</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
</tr>
<tr>
<td>Frequency:</td>
<td>24</td>
<td>21</td>
<td>29</td>
<td>6</td>
<td>21</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Letter:</td>
<td>O</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>S</td>
<td>T</td>
<td>U</td>
</tr>
<tr>
<td>Frequency:</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>14</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Letter:</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency:</td>
<td>27</td>
<td>5</td>
<td>17</td>
<td>12</td>
<td>45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(e \Rightarrow Z \)
- \(f_j = 29, f_v = 27 \)
- \(f_{jcz} = 8 \rightarrow t \Rightarrow J \)
- \(h \Rightarrow C \)
- \(a \Rightarrow V \)
 (đứng riêng, mạo từ a)

\[J, V, B, H, D, I, L, C \{ t, a, o, i, n, s, h, r \} \]

\[t, a \quad h \]

\[JZB = te ? \{ teo, tei, ten, ter, tes \} \Rightarrow n \Rightarrow B \]
YKHLnA the Salt ten TeaHl the aHt DR leXKHLnA aSS RDHEI DR Yata LnXSKYLnA YLALtaS IFeeXh hal LEFHDNeY EanLRDSY the FHLEaHT HeaIDn RDH thLI hal Ween the aYNent DR ELXHDeSeXtHDnLXI the XDEFSeQLtT DR the RKnXtLDnl that Xan nDP We FeHRDHEeY WT the EaXhLne hal HLIen YHaEatLXaSST al a HXXIKSt DR thLI HeXent YeNeXDFEent Ln teXhnDSDAT EanT DR the XLFheH ITIteElthat PeHe DnXe XDnLYXHeYleKHe aHenDP WHeaMaWSe

\(e \Rightarrow Z, \ t \Rightarrow J, \ h \Rightarrow C, \ a \Rightarrow V, \ n \Rightarrow B \)

\{H,D,I,L\} can be \{o,i,s,r\}

\(al = a? \) \{ao, ai, as, ar\}

\(\Rightarrow S \rightarrow I \)

Note:
UPPERCASE ~ cipher text
lowercase ~ plain text

CuuDuongThanCong.com
https://fb.com/tailieudientucntt
YKHLnA the Sast ten TeaHs the aHt DR seXKHLnA aSS RDHEs DR Yata LnXSKYLnA YLALtaS sFeeXh has LEFHDNeY EanLRDSY the FHLEaHT HeasDn RDH thLs has Ween the aYNent DR ELXHDeSeXtHDnLXs the XDEFSeQLtT DR the RKnXtLDns that Xan nDP We FeHRDHEeY WT the EaXhLne has HLsen YHaEatLXaSST as a HXXsKSt DR thLs HeXent YeNeXDFEent Ln teXhnDSDAT EanT DR the XLFheH sTsteEsthat PeHe DnXe XDnsLYXHeYseKHe aHenDP WHeaMaWSe

\{H,D,L\} can be \{o,i,r\}

thLs = th?s \{thos, this, thrs\}

\[i \Rightarrow L \]
YKHinA the Sast ten TeaHs the aHt DR seXKHinA aSS RDHEs DR Yata inXSKYinA YiAitaS sFeeXh has iEFHDNeY EaniRDSY the FHIEaHT HeasDn RDH this has Ween the aYNent DR EiXHDeSeXtHDniXs the XDEFSeQiT DR the RKnXtiDns that Xan nDP We FeHRDHEeY WT the EaXhine has Hisen YHaEatiXaSST as a HXXsKSt DR this HeXent YeNeXDFEent in teXhnDSDAT EanT DR the XiFheH sTsteEsthat PeHe DnXe XDnsiYXHeYseKHe aHenDP WHeaMaWSe

\{H,D\} can be \{o,r\}

\[aHt = a?t\ \{aot, art\}\]
\[\Rightarrow r \Rightarrow H, \ o \Rightarrow D\]
reason Ror this has Ween the aYNent oR EiXroeSeXtroniXs the XoEFSeQitT oR the RKnXtions that Xan noP We FerRorEeY WT the EaXhine has risen YraEatiXaSST as a rXXsKSt oR this reXEnt YeNeXoFEent in teXhnoSoAT EanT oR the XiFher sTsteEsthat Pere onXe XonsiYXreYseKre arenP WreaMaWSe

reason Ror this has Ween ➔ reason for this has been this reXEnt ➔ this recent

➔ f => R, b => W, c => X
YKrinA the Sast ten Tears the art of secKrinA aSS forEs of Yata incSKYinA YiAitaS sFeach has iEFroNeY EenifoSY the FriEarT reason for this has been the aYNent of EicroeSectronics the coEFSeQitT of the fKnctions that can noP be FerforEeY bT the Eachine has risen YraEaticaSST as a rccsKSt of this recent YeNecoFEent in technoSoAT EanT of the ciFher sTsteEsthat Pere once consiYcreYseKre arenoP breaMabSe

of the fKnctions ➔ of the functions
of the ciFher ➔ of the cipher

➔ u => K, p => F

- n h o - - - - r s t - i - - - - - f - - - a b c - e
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Intro to Cryptography - Van K. Nguyen

CuuDuongThanCong.com
https://fb.com/tailieudientucntt
YurinA the Sast ten Tears the art of securing all

during the last ten years the art of securing all

\[d \Rightarrow Y, \ g \Rightarrow A, \ l \Rightarrow S, \ y \Rightarrow T \]
during the last ten years the art of securing all forms of data including digital speech has improved manifold the primary reason for this has been the advent of microelectronics the complexity of the functions that can now be performed by the machine has risen dramatically as a reesult of this recent development in technology many of the cipher systemsthat were once considered secure are now breakable

\[
f_P = 3, \quad f_M = 1
\]

- P can be \{j, k, q, z, w\}
 - Pere = ?ere \{jere, kere, qere, zere, were\}. \(\rightarrow\) w \(\Rightarrow\) P
- M can be \{j, k, q, z\}
 - breaMable \{breajable, breakable, breaqable, breazable\} \(\rightarrow\) k \(\Rightarrow\) M

\[
f_O = f_G = f_U = 0 \rightarrow \text{can not specify}
\]
Substitution Ciphers: Cryptanalysis

- Observations:
 - A cipher system should not allow statistical properties of plaintext to pass to the ciphertext.
 - The ciphertext generated by a "good" cipher system should be statistically indistinguishable from random text.

- Idea for a stronger cipher (1460’s by Alberti)
 - use more than one cipher alphabet, and switch between them when encrypting different letters ➔ Polyalphabetic Substitution Ciphers
 - Developed into a practical cipher by Vigenère (published in 1586)
Vigenère cipher

- **Definition:**
 - Given \(m \), a positive integer, \(P = C = (\mathbb{Z}_{26})^n \), and \(K = (k_1, k_2, ..., k_m) \) a key, we define:

- **Encryption:**
 \[e_k (p_1, p_2, ..., p_m) = (p_1 + k_1, p_2 + k_2, ..., p_m + k_m) \pmod{26} \]

- **Decryption:**
 \[d_k (c_1, c_2, ..., c_m) = (c_1 - k_1, c_2 - k_2, ..., c_m - k_m) \pmod{26} \]

- **Example:**
 - Plaintext: C R Y P T O G R A P H Y
 - Key: L U C K L U C K L U C K
 - Ciphertext: N L A Z E I I B L J J I
Vigenère Cipher: Cryptanalysis

- Find the length p of the key: the crucial problem
- If p is known, divide the message into p groups of letters
 - For each fixed $i=0,p-1$, group # i consists of letters at positions $kp + i$ ($k=1,2,3 \ldots$)
 - Obviously, each such group is a shift cipher encryption.
- Use frequency analysis to solve the resulting shift ciphers.
Use Index of Coincidence to find the key length

- Index of Coincidence (IC) – by Friedman, 1922
- Informally: Measures the probability that two random elements of the n-letters string x are identical.
- **Definition:** Suppose $x = x_1x_2...x_n$ is a string of n alphabetic characters. Then $IC(x)$, the index of coincidence is:

$$IC(x) = \Pr\{x_i = x_j| \text{for any two } x_i, x_j \text{ randomly selected from } x\}$$

- Now to find the key length we find the p which make the average IC of each mentioned letter group become highest
Use Index of Coincidence to find the key length

- IC can be determined by this

\[IC(x) = \frac{\sum_{i=0}^{25} f_i (f_i - 1)}{n(n-1)} \]

- Where \(f_i \) is the appearance frequency of the alphabet’s \(i \)th letter in the message \(x \).
Use Index of Coincidence to find the key length

- For natural language such as English, IC is higher

<table>
<thead>
<tr>
<th>Letter</th>
<th>(p_i)</th>
<th>Letter</th>
<th>(p_i)</th>
<th>Letter</th>
<th>(p_i)</th>
<th>Letter</th>
<th>(p_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.082</td>
<td>H</td>
<td>.061</td>
<td>O</td>
<td>.075</td>
<td>V</td>
<td>.010</td>
</tr>
<tr>
<td>B</td>
<td>.015</td>
<td>I</td>
<td>.070</td>
<td>P</td>
<td>.019</td>
<td>W</td>
<td>.023</td>
</tr>
<tr>
<td>C</td>
<td>.028</td>
<td>J</td>
<td>.002</td>
<td>Q</td>
<td>.001</td>
<td>X</td>
<td>.001</td>
</tr>
<tr>
<td>D</td>
<td>.043</td>
<td>K</td>
<td>.008</td>
<td>R</td>
<td>.060</td>
<td>Y</td>
<td>.020</td>
</tr>
<tr>
<td>E</td>
<td>.127</td>
<td>L</td>
<td>.040</td>
<td>S</td>
<td>.063</td>
<td>Z</td>
<td>.001</td>
</tr>
<tr>
<td>F</td>
<td>.022</td>
<td>M</td>
<td>.024</td>
<td>T</td>
<td>.091</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>.020</td>
<td>N</td>
<td>.067</td>
<td>U</td>
<td>.028</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
I_c(x) = \sum_{i=0}^{i=25} p_i^2 = 0.065
\]
Use Index of Coincidence to find the key length

<table>
<thead>
<tr>
<th>Key length (p)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>...</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>0.068</td>
<td>0.052</td>
<td>0.047</td>
<td>0.044</td>
<td>0.043</td>
<td>...</td>
<td>0.041</td>
</tr>
</tbody>
</table>

- For a shift cipher, IC is just the same as of English plaintext
- For Vigenere cipher if we gradually increase the key length p the IC will decrease gradually ($p=1$ \Rightarrow shift cipher)
- Remark: the high fluctuation of letter frequencies in natural languages (e.g. English) cause the IC become higher
 - For Vigenere, the letter frequencies becomes more equally for higher key length \Rightarrow IC become lower
Use Index of Coincidence to find the key length

- Practical approach in finding p of a given Vigenere cipher
 1. Set $k=1$
 2. Check if p equals k
 - 2.a. Devide the cipher into k letter groups as before and compute the IC of each.
 - 2.b. If they all are quite the same and approximately equals to 0.068 then $p=k$
 - If they are quite different to each other and quite smaller than 0.068 then $p>k$
 4. Increase k by 1 and go back to step 2
If m is the key length, then the text "looks like" English text:

$$I_c(y_i) = \sum_{i=0}^{i=25} p_i^2 = 0.065 \quad \forall 1 \leq i \leq m$$

If m is not the key length, the text "looks like" random text and:

$$I_c \approx \sum_{i=0}^{i=25} \left(\frac{1}{26}\right)^2 = 26 \times \frac{1}{26^2} = \frac{1}{26} = 0.038$$

$q = q_1 q_2 \ldots q_n$, m is the key length.
One-Time Pad

Key is chosen randomly
Plaintext \(X = (x_1 \ x_2 \ \ldots \ x_n) \)
Key \(K = (k_1 \ k_2 \ \ldots \ k_n) \)
Ciphertext \(Y = (y_1 \ y_2 \ \ldots \ y_n) \)

\[e_k(X) = (x_1+k_1 \ x_2+k_2 \ \ldots \ x_n+k_n) \mod m \]
\[d_k(Y) = (x_1-k_1 \ x_2-k_2 \ \ldots \ x_n-k_n) \mod m \]
Example

Plaintext space = Ciphertext space =
Keyspace = \{0,1\}^n
Key is chosen randomly
For example:
Plaintext is 10001011
Key is 00111001
Then ciphertext is 10110010
Main points in One-Time Pad

- The key is never to be reused
 - Thrown away after first and only use
 - If reused → insecure!
- One-Time Pad uses a very long key, exactly the same length as of the plaintext
 - In old days, some suggest choose the key as texts from, e.g., a book → i.e. not randomly chosen
 - Not One-Time Pad anymore → this does not have perfect secrecy as in true One-Time-Pad and can be broken
 - Perfect secrecy means key length be at least message length
 - Difficult in practice!
Further remarks

- Shift ciphers are easy to break using brute force attacks (exhaustive key search)
- Substitution ciphers preserve language features (in N-gram frequency) and are vulnerable to frequency analysis attacks.
- Vigenère cipher are also vulnerable to frequency analysis once the key length is found.
 - In general poly-alphabetical substitution ciphers are not that secure
- OTP has perfect secrecy if the key is chosen randomly in the message length and is used only once.
Models for Evaluating Security

- **Unconditional (information-theoretic) security**
 - Assumes that the adversary has unlimited computational resources.
 - Plaintext and ciphertext modeled by their distribution.
 - Analysis is made by using probability theory.
 - For encryption systems: **perfect secrecy**, observation of the ciphertext provides no information to an adversary.
Models for Evaluating Security

- **Provable security:**
 - Prove security properties based on assumptions that it is difficult to solve a well-known and supposedly difficult problem (NP-hard …)
 - E.g.: computation of discrete logarithms, factoring

- **Computational security (practical security)**
 - Measures the amount of computational effort required to defeat a system using the best-known attacks.
 - Sometimes related to the hard problems, but no proof of equivalence is known.
Models for Evaluating Security

- **Ad hoc security (heuristic security):**
 - Variety of convincing arguments that every successful attack requires more resources than the ones available to an attacker.
 - Unforeseen attacks remain a threat.
 - **THIS IS NOT A PROOF**
Perfect Secrecy

- Consider this ciphertext-only attack model
 - Eve can eavesdrop all the ciphertext
 - Eve has unconditional power: unlimited computation resource

- We now consider if such an enemy with computation power as of God’s can always find the plaintext (or key)?
 - If yes, there is never Perfect Secrecy
 - Otherwise, then see how we can define it
Exhaustive searching

- Given a cryptogram Y created by a substitution cipher, to find the corresponding plaintext X, Eve can try all the possible key (i.e. substitution).
- However, for short Y we can find multiple X which are meaningful English can’t find exactly the origin X.

E.g. given Y = AZNPTFZHLKZ

- We can find at least 2 possible plaintexts
 - **Subs 1**

 | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
 | K | B | C | D | T | E | G | I | J | M | O | L | A | Q | R | H | S | F | N | P | U | V | W | X | Z | Y |

 - **Subs 2**

 | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z |
 | L | P | H | N | Z | K | T | A | F | E |

 - **Possible plaintext**

 MÁ: A Z N P T F Z H L K Z

 TIN 1: m y s t e r y p l a y

 TIN 2: r e d b l u e c a k e
Remarks

- On mono-alphabetic cipher
 - For given short ciphertext, there can be multiple possible plaintext corresponding to it
 - However if the length of the ciphertext is at least 50 then there will be always only one true plaintext.
 - Thus, for sufficient long ciphertext powerful Eve will always success

- Thus, Eve can not always be successful, but when obtained enough ciphertext.
 - Chance of success is higher when more ciphertext is intercepted

- However, Perfect Secrecy can be obtained:
 - One-time pad: Eve can guess nothing, no matter how long ciphertext she can intercept
Shannon’s (Information-Theoretic) Perfect Secrecy

- Basic Idea: Ciphertext should provide no “information” about Plaintext –
 \[\Pr(X) = \Pr(X/Y) \quad \forall \text{TIN } X \text{ và mã } Y \]
 Probabilistic distribution of plaintext X is still the same after Eve has the knowledge of the corresponding ciphertext Y

- One-time pad has perfect secrecy
 - E.g., suppose that the ciphertext is “Hello”, can we say any plaintext is more likely than another plaintext?

On “examining” the security of a cipher

- Shannon: the concept of “unicity distance” to “measure” the security of a cipher system:
 - Unicity distance, denoted by N_0, is the minimum length of ciphertext that the powerful Eve have to obtain in order to figure out an unique plaintext appropriate for it.
 - This can be computed as $N_0 = \frac{\log_2 E}{d}$
 - d: the redundancy rate of the plaintext language.

- Example on redundancy
 - The following sentence has been shortened but can be figured out uniquely!

 Mst ids cn b xprsd n fwr ltrs, bt th xprsn s mst nplsnt
On “examining” the security of a cipher

Shannon: the concept of “unicity distance” to “measure” the security of a cipher system:

- Unicity distance, denoted by N_0, is the minimum length of ciphertext that the powerful Eve have to obtain in order to figure out an unique plaintext appropriate for it.

- This can be computed as

$$N_0 = \frac{\log_2 E}{d}$$

where d: the redundancy rate of the plaintext language.

Example on redundancy

Most ideas can be expressed in fewer letters, but the expression is most unpleasant

Most ideas can be expressed in fewer letters, but the expression is most unpleasant

This proves that natural languages have redundancy
Redundancy

- **Redundancy** in information theory is the number of bits used to transmit a message minus the number of bits of actual information in the message.
 - Informally, it is the amount of wasted "space" used to transmit certain data.
 - **Data compression** is a way to reduce or eliminate unwanted redundancy, while **checksums** are a way of adding desired redundancy for purposes of **error detection** when communicating over a noisy channel of limited **capacity**.

- Redundancy can be defined as
 \[d = R - r \text{ bits} \]
 - where \(R \) is the **absolute rate** and \(r \) is the **true rate** of a language.
 - The **absolute rate** of a language or source is simply
 \[R = \log_2 M \text{bits} \]
 where \(M \) is the size of the alphabet.
 - For English, \(R = \log_2 26 \approx 4.7 \text{ bits} \).
 - True rate \(r \) is the rate after the text is compressed
 - **For English**, \(r \) is 1 - 1.5 bit
On “examining” the security of a cipher

- Redundancy is reflecting, measuring the structure or the predictability of a language.
 - For English, redundancy is between 3.2 and 3.7 bits (caused by the high difference of frequencies of letters as well as bigrams trigram)
- Using unicity distance we can have a “feeling” about the security of different ciphers
 - For mono-alphabetic ciphers, we observe
 \[E = |Z| = 26! \]
 \[\Pr(Z) = 1/26! \]
 \[\log_2 E = \log_2(26!) \approx 88.4 \text{ bits} \]
 \[N_0 \approx \frac{88.4}{3.7} \approx 23.9 \text{ ký tự} \]
 - So ciphers of length at least 24 would be solved uniquely!
On “examining” the security of a cipher

- For one-time-pad:
 - X, the plaintext space = \{set of English text of length k\}
 - Z, the key space = \{set of k-length sequence on the English alphabet\}
 - If keys are selected equally randomly
 \[N_0 = \log_2 E / d \]
 \[E = 26^k \Rightarrow \log_2(26^k) = k \log_2 26 \approx 4.7k \]
 \[N_0 = (4.7k) / 3.7 = 1.37k \]
 - Thus, Eve can intercept to all the ciphertext she want but can never find the true plaintext.
Some quiz

- Why IC decreases when the number of substitution alphabets increases?
- Can you guess of any connection between IC and redundancy?