Introduction to Artificial Intelligence

Chapter 3: Knowledge Representation and Reasoning

(1) Logic Agents

Nguyễn Hải Minh, Ph.D
nhminh@fit.hcmus.edu.vn
Outline

1. Knowledge-Based Agents
2. The Wumpus World
Knowledge-Based Agents

- Human intelligence is achieved not purely by reflex mechanisms but by reasoning that operate on internal representation of knowledge.

In AI, this approach to intelligence is embodied in knowledge-based agents.
Knowledge-Based Agents

Problem-solving agents in chapter 2:

- **State-space model:**
 - Limited knowledge
 - Inflexible
 - Cannot make deduction

- **Constraint satisfaction problem solver:**
 - Enabling some parts of the agent to work in a domain-independent way
 - More efficient algorithms
 - Can be developed to logical agents
Knowledge-Based Agents

Knowledge-based agents:

- Can combine and recombine information
- Can learn new knowledge about the environment
- Can adapt the changes in the environment by updating the relevant knowledge
Knowledge-Based Agents

- **KB** = Knowledge base
 - A set of sentences or facts (in a logic language)

- **Inference**
 - Derive (infer) new sentences from old ones

- **A simple model for reasoning:**

![Diagram](https://example.com/diagram.png)
Knowledge-Based Agents

A simple model for reasoning:
- KB = \{A \rightarrow (B \text{ or } C)\}, then given A and Not C, we can infer that B is true
- B is now added to the KB even though it is not explicitly asserted
A generic knowledge-based agent

```
function KB-AGENT(percept) returns an action
  persistent: KB, a knowledge base
              t, a counter, initially 0, indicating time

  TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))

  action ← ASK(KB, MAKE-ACTION-QUERY(t))
  TELL(KB, MAKE-ACTION-SENTENCE(action, t))
  t ← t + 1

  return action
```
A generic knowledge-based agent

- **Declarative approach**
 - Empty KB \rightarrow TELL the agent the facts (sentences) one by one until it knows how to operate in its environment.

- **Procedural approach**
 - Encode desired behaviors directly as program code.

- **Combine approach**
 - **Partially autonomous**

- **Learning approach (chapter 4)**
 - Provide a knowledge-based agent with mechanisms that allow it to learn for itself.
 - **Fully autonomous**
The Wumpus World

```
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Stench</td>
<td>Breeze</td>
<td>PIT</td>
</tr>
<tr>
<td>3</td>
<td>Breeze</td>
<td>Stench</td>
<td>PIT</td>
</tr>
<tr>
<td>2</td>
<td>Stench</td>
<td>Breeze</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>START</td>
<td>Breeze</td>
<td>PIT</td>
</tr>
</tbody>
</table>
```
The Wumpus World - PEAS

- **Performance measure**
 - +1000 for climbing out of the cave with gold
 - -1000 for death
 - -1 per step, -10 for using the arrow
 - Ends when agent dies or climbs out of the cave

- **Environment**
 - A 4×4 grid of rooms
 - Agent starts in the square [1,1], facing to the right
 - Gold and Wumpus locations are random
 - Each square can be a pit, with probability 0.2
The Wumpus World - PEAS

- **Actuators:**
 - Move forward, TurnLeft/Right 90°
 - Grab, Shoot, Climb

- **Sensors:** 5 sensors to perceive:
 - Stench
 - Breeze
 - Glitter
 - Bump
 - Scream

Percept: [Stench, Breeze, None, None, None]
The Wumpus World - Characterization

- **Fully Observable**: No – only local perception
- **Deterministic**: Yes – outcomes exactly specified
- **Episodic**: No – sequential at the level of actions
- **Static**: Yes – Wumpus and Pits do not move
- **Discrete**: Yes
- **Single-agent**: Yes – Wumpus is essentially a natural feature
Exploring a wumpus world

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus
Exploring a wumpus world

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus
Exploring a wumpus world

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus
Exploring a wumpus world

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus
Exploring a wumpus world

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus
Exploring a wumpus world

\[A \] = Agent
\[B \] = Breeze
\[G \] = Glitter, Gold
\[OK \] = Safe square
\[P \] = Pit
\[S \] = Stench
\[V \] = Visited
\[W \] = Wumpus
Exploring a wumpus world

A = Agent
B = Breeze
G = Glitter, Gold
OK = Safe square
P = Pit
S = Stench
V = Visited
W = Wumpus
Exploring a wumpus world

\[A = \text{Agent} \]
\[B = \text{Breeze} \]
\[G = \text{Glitter, Gold} \]
\[\text{OK} = \text{Safe square} \]
\[P = \text{Pit} \]
\[S = \text{Stench} \]
\[V = \text{Visited} \]
\[W = \text{Wumpus} \]
Logic in general

- **Logics** are formal languages for representing information such that conclusions can be drawn
- **Syntax** defines the sentences in the language
- **Semantics** define the "meaning" of sentences
 - i.e., define **truth** of a sentence in a world
- E.g., the language of arithmetic
 - \(x+2 \geq y \) is a sentence; \(x^2+y > \{} \) is not a sentence
 - \(x+2 \geq y \) is true iff the number \(x+2 \) is no less than the number \(y \)
 - \(x+2 \geq y \) is true in a world where \(x = 7, y = 1 \)
 - \(x+2 \geq y \) is false in a world where \(x = 0, y = 6 \)
Entailment

- Entailment means that one thing follows from another:

\[KB \models \alpha \]

- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
 - E.g., the KB containing “Apple is red” and “Tomato is red” entails “Either the apple or the tomato is red”
 - E.g., $x+y = 4$ entails $4 = x+y$
 - Entailment is a relationship between sentences (i.e., syntax) that is based on semantics
Models

- Logicians typically think in terms of *models*, which are formally structured worlds with respect to which truth can be evaluated.
- We say m is a model of a sentence α if α is true in m.
- $M(\alpha)$ is the set of all models of α.
- Then $KB \models \alpha$ iff $M(KB) \subseteq M(\alpha)$.
 - E.g. $KB = \text{Apple and tomato are red}$
 - $\alpha = \text{Apple is red}$
Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

Consider possible models for KB assuming only pits

3 Boolean choices \Rightarrow 8 possible models
Wumpus models
Wumpus models

\[KB = \text{wumpus-world rules} + \text{observations} \]
Wumpus models

- $KB = \text{wumpus-world rules + observations}$
- $\alpha_1 = "[1,2] \text{ is safe}", KB \models \alpha_1$, proved by model checking
Wumpus models

- $KB = \text{wumpus-world rules + observations}$
- $\alpha_2 = \text{"[2,2] is safe"}$, $KB \nvDash \alpha_2$
Inference

- \(KB \vdash_i \alpha \) = sentence \(\alpha \) can be derived from \(KB \) by procedure \(i \)

- **Soundness**: \(i \) is sound if whenever \(KB \vdash_i \alpha \), it is also true that \(KB \models \alpha \)

- **Completeness**: \(i \) is complete if whenever \(KB \models \alpha \), it is also true that \(KB \vdash_i \alpha \)

- **Preview**: we will define a logic (first-order logic) which is expressive enough to say almost anything of interest, and for which there exists a sound and complete inference procedure.

- That is, the procedure will answer any question whose answer follows from what is known by the \(KB \).
No independent access to the world

• The reasoning agent often gets its knowledge about the facts of the world as a sequence of logical sentences and must draw conclusions only from them without independent access to the world.

• Thus it is very important that the agent’s reasoning is sound!
Summary

❑ Intelligent agents need knowledge about the world for making good decisions.
❑ The knowledge of an agent is stored in a knowledge base in the form of sentences in a knowledge representation language.
❑ A knowledge-based agent needs a knowledge base and an inference mechanism. It operates by storing sentences in its knowledge base, inferring new sentences with the inference mechanism, and using them to deduce which actions to take.
❑ A representation language is defined by its syntax and semantics, which specify the structure of sentences and how they relate to the facts of the world.
❑ The interpretation of a sentence is the fact to which it refers. If this fact is part of the actual world, then the sentence is true.