Chapter 2
Logics (cont.)

Discrete Mathematics I on 08 March 2011

Tran Vinh Tan
Faculty of Computer Science and Engineering
University of Technology - VNUHCM

https://fb.com/tailieudientucong
Contents

1 Predator Logic

2 Proof Methods
Limits of Propositional Logic

- $x > 3$
- All square numbers are not prime numbers. 100 is a square number. Therefore 100 is not a prime number.
Predicates

Definition
A predicate (vị từ) is a statement containing one or more variables. If values are assigned to all the variables in a predicate, the resulting statement is a proposition (mệnh đề).

Example:
- $x > 3$ (predicate)
- $5 > 3$ (proposition)
- $2 > 3$ (proposition)
Predicates

- \(x > 3 \rightarrow P(x) \)
- \(5 > 3 \rightarrow P(5) \)
- A predicate with \(n \) variables \(P(x_1, x_2, \ldots, x_n) \)
Truth value

- $x > 3$ is true or false?
- $5 > 3$
- For every number x, $x > 3$ holds
- There is a number x such that $x > 3$
Quantifiers

- **∀**: Universal – Với mọi
 - \(\forall x P(x) = P(x) \) is T for all \(x \)
- **∃**: Existential – Tồn tại
 - \(\exists x P(x) = \) There exists an element \(x \) such that \(P(x) \) is T
- We need a **domain of discourse** for variable

[Logics (cont.)](#)
Tran Vinh Tan

[Contents](#)
Predicate Logic
Proof Methods

https://fb.com/tailieudientucntt
Example

Let $P(x)$ be the statement “$x < 2$”. What is the truth value of the quantification $\forall x P(x)$, where the domain consists of all real number?

- $P(3) = 3 < 2$ is false
- $\Rightarrow \forall x P(x)$ is false

- 3 is a counterexample (phan ví dụ) of $\forall x P(x)$

Example

What is the truth value of the quantification $\exists x P(x)$, where the domain consists of all real number?
Example

Express the statement “Some student in this class comes from Central Vietnam.”

Solution 1

- $M(x) = x$ comes from Central Vietnam
- Domain for x is the students in the class
- $\exists x M(x)$

Solution 2

- Domain for x is all people
- ...
Negation of Quantifiers

<table>
<thead>
<tr>
<th>Statement</th>
<th>Negation</th>
<th>Equivalent form</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall x P(x)$</td>
<td>$\neg (\forall x P(x))$</td>
<td>$\exists x \neg P(x)$</td>
</tr>
<tr>
<td>$\exists x P(x)$</td>
<td>$\neg (\exists x P(x))$</td>
<td>$\forall x \neg P(x)$</td>
</tr>
</tbody>
</table>

Example

- All CSE students study Discrete Math 1
- Let $C(x)$ denote “x is a CSE student”
- Let $S(x)$ denote “x studies Discrete Math 1”
- $\forall x : C(x) \rightarrow S(x)$
- $\exists x : \neg(C(x) \rightarrow S(x)) \equiv \exists x : C(x) \land \neg S(x)$
- There is a CSE student who does not study Discrete Math 1.
Another Example

Example

Translate these:

- All lions are fierce.
- Some lions do not drink coffee.
- Some fierce creatures do not drink coffee.

Solution

Let $P(x)$, $Q(x)$ and $R(x)$ be the statements “x is a lion”, “x is fierce” and “x drinks coffee”, respectively.

- $\forall x (P(x) \rightarrow Q(x))$.
- $\exists x (P(x) \land \neg R(x))$.
- $\exists x (Q(x) \land \neg R(x))$.
The Order of Quantifiers

- The order of quantifiers is important, unless all the quantifiers are universal quantifiers or all are existential quantifiers.
- Read from left to right, apply from inner to outer.

Example

\[\forall x \ \forall y \ (x + y = y + x) \]

T for all \(x, y \in \mathbb{R} \)

Example

\[\forall x \ \exists y \ (x + y = 0) \text{ is T,} \]

while

\[\exists y \ \forall x \ (x + y = 0) \text{ is F} \]
Translating Nested Quantifiers

Example

\[\forall x \ (C(x) \lor \exists y \ (C(y) \land F(x, y))) \]

Provided that:

- \(C(x) \): \(x \) has a computer,
- \(F(x, y) \): \(x \) and \(y \) are friends,
- \(x, y \in \) all students in your school.

Answer

For every student \(x \) in your school, \(x \) has a computer or there is a student \(y \) such that \(y \) has a computer and \(x \) and \(y \) are friends.
Translating Nested Quantifiers

Example

$$\exists x \forall y \forall z \ ((F(x, y) \land F(x, z) \land (y \neq z)) \rightarrow \neg F(y, z))$$

Provided that:

- $F(x, y)$: x, y are friends
- $x, y, z \in$ all students in your school.

Answer

There is a student x, so that for every student y, every student z not the same as y, if x and y are friends, and x and z are friends, then y and z are not friends.
Translating into Logical Expressions

Example

1. “There is a student in the class has visited Hanoi”.
2. “Every students in the class have visited Nha Trang or Vung Tau”.

Answer

Assume:

\[C(x) : x \text{ has visited Hanoi} \]
\[D(x) : x \text{ has visited Nha Trang} \]
\[E(x) : x \text{ has visited Vung Tau} \]

We have:

1. \[\exists x C(x) \]
2. \[\forall x (D(x) \lor E(x)) \]
Translating into Logical Expressions

Example
Every people has one best friend.

Solution
Assume:
- $B(x, y) : y$ is the best friend of x

We have:
$\forall x \exists y \forall z (B(x, y) \land ((y \neq z) \rightarrow \neg B(x, z)))$
Translating into Logical Expressions

Example

If a person is a woman and a parent, then this person is mother of some one.

Solution

We define:

- $C(x) : x$ is woman
- $D(x) : x$ is a parent
- $E(x, y) : x$ is mother of y

We have:

$$\forall x((C(x) \land D(x)) \rightarrow \exists y E(x, y))$$
Inference

Example

• If I have a girlfriend, I will take her to go shopping.
• Whenever I and my girlfriend go shopping and that day is a special day, I will surely buy her some expensive gift.
• If I buy my girlfriend expensive gifts, I will eat noodles for a week.
• Today is March 8.
• March 8 is such a special day.
• Therefore, if I have a girlfriend,...
• I will eat noodles for a week.
Propositional Rules of Inferences

<table>
<thead>
<tr>
<th>Rule of Inference</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>Modus ponens</td>
</tr>
<tr>
<td>(p \rightarrow q)</td>
<td></td>
</tr>
<tr>
<td>(\therefore q)</td>
<td></td>
</tr>
<tr>
<td>(\neg q)</td>
<td>Modus tollens</td>
</tr>
<tr>
<td>(p \rightarrow q)</td>
<td></td>
</tr>
<tr>
<td>(\therefore \neg p)</td>
<td></td>
</tr>
<tr>
<td>(p \rightarrow q)</td>
<td>Hypothetical syllogism</td>
</tr>
<tr>
<td>(q \rightarrow r)</td>
<td></td>
</tr>
<tr>
<td>(\therefore p \rightarrow r)</td>
<td>(Tam đoạn luận giả định)</td>
</tr>
<tr>
<td>(p \lor q)</td>
<td>Disjunctive syllogism</td>
</tr>
<tr>
<td>(\neg p)</td>
<td></td>
</tr>
<tr>
<td>(\therefore q)</td>
<td></td>
</tr>
<tr>
<td>(\neg p)</td>
<td></td>
</tr>
<tr>
<td>(\therefore q)</td>
<td></td>
</tr>
<tr>
<td>(\neg)</td>
<td></td>
</tr>
<tr>
<td>(p \rightarrow q)</td>
<td></td>
</tr>
<tr>
<td>(\therefore \neg)</td>
<td></td>
</tr>
</tbody>
</table>
Propositional Rules of Inferences

<table>
<thead>
<tr>
<th>Rule of Inference</th>
<th>Name</th>
</tr>
</thead>
</table>
| \[
\begin{align*}
 p \\
 \therefore p \lor q
\end{align*}
\] | Addition |
| \[
\begin{align*}
 p \land q \\
 \therefore p
\end{align*}
\] | Simplification |
| \[
\begin{align*}
 p \\
 q \\
 \therefore p \land q
\end{align*}
\] | Conjunction |
| \[
\begin{align*}
 p \lor q \\
 \neg p \lor r \\
 \therefore q \lor r
\end{align*}
\] | Resolution |

CuuDuongThanCong.com

https://fb.com/tailieudientucntt
Example

If it rains today, then we will not have a barbecue today. If we do not have a barbecue today, then we will have a barbecue tomorrow. Therefore, if it rains today, then we will have a barbecue tomorrow.

Solution

- p: It is raining today
- q: We will not have a barbecue today
- r: We will have barbecue tomorrow

$p \rightarrow q$
$q \rightarrow r$
\[\therefore p \rightarrow r \]

Hypothetical syllogism
Example

- It is not sunny this afternoon ($\neg p$) and it is colder than yesterday (q)
- We will go swimming (r) only if it is sunny
- If we do not go swimming, then we will take a canoe trip (s)
- If we take a canoe trip, then we will be home by sunset (t)
- We will be home by sunset (t)

1. $\neg p \land q$ Hypothesis
2. $\neg p$ Simplification using (1)
3. $r \rightarrow p$ Hypothesis
4. $\neg r$ Modus tollens using (2) and (3)
5. $\neg r \rightarrow s$ Hypothesis
6. s Modus ponens using (4) and (5)
7. $s \rightarrow t$ Hypothesis
8. t Modus ponens using (6) and (7)
Definition

Fallacies (ngụy biện) resemble rules of inference but are based on contingencies rather than tautologies.

Example

If you do correctly every questions in mid-term exam, you will get 10 grade. You got 10 grade.

Therefore, you did correctly every questions in mid-term exam.

Is \([p \rightarrow q \land q] \rightarrow p\) a tautology?
Rules of Inference for Quantified Statements

<table>
<thead>
<tr>
<th>Rule of Inference</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\forall x P(x))</td>
<td>Universal instantiation ((Cụ thể hóa phổ quát))</td>
</tr>
<tr>
<td>(\therefore P(c))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule of Inference</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(c)) for an arbitrary (c)</td>
<td>Universal generalization ((Tổng quát hóa phổ quát))</td>
</tr>
<tr>
<td>(\therefore \forall x P(x))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule of Inference</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists x P(x))</td>
<td>Existential instantiation ((Cụ thể hóa tồn tại))</td>
</tr>
<tr>
<td>(\therefore P(c)) for some element (c)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule of Inference</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(c)) for some element (c)</td>
<td>Existential generalization ((Tổng quát hóa tồn tại))</td>
</tr>
<tr>
<td>(\therefore \exists x P(x))</td>
<td></td>
</tr>
</tbody>
</table>
Example

- A student in this class has not gone to class
- Everyone in this class passed the first exam
- Someone who passed the first exam has not gone to class

Hint

- $C(x)$: x is in this class
- $B(x)$: x has gone to class
- $P(x)$: x passed the first exam
- Premises???
1. $\exists x (C(x) \land \neg B(x))$ \hspace{1em} \text{Premise}
2. $C(a) \land \neg B(a)$ \hspace{1em} \text{Existential instantiation from (1)}
3. $C(a)$ \hspace{1em} \text{Simplification from (2)}
4. $\forall x (C(x) \rightarrow P(x))$ \hspace{1em} \text{Premise}
5. $C(a) \rightarrow P(a)$ \hspace{1em} \text{Universal instantiation from (4)}
6. $P(a)$ \hspace{1em} \text{Modus ponens from (3) and (5)}
7. $\neg B(a)$ \hspace{1em} \text{Simplification from (2)}
8. $P(a) \land \neg B(a)$ \hspace{1em} \text{Conjunction from (6) and (7)}
9. $\exists x (P(x) \land \neg B(x))$ \hspace{1em} \text{Existential generalization from (8)}
Introduction

Definition

A proof is a sequence of logical deductions from
- axioms, and
- previously proved theorems
that concludes with a new theorem.
Terminology

- **Theorem** (định lý) = a statement that can be shown to be true
- **Axiom** (tiên đề) = a statement we assume to be true
- **Hypothesis** (giả thiết) = the premises of the theorem
- **Lemma** (*bổ đề*) = less important theorem that is helpful in the proofs of other results
- **Corollary** (*hệ quả*) = a theorem that can be established directly from a proved theorem
- **Conjecture** (*phỏng đoán*) = statement being proposed to be true, when it is proved, it becomes theorem
Proving a Theorem

Many theorem has the form $\forall x P(x) \rightarrow Q(x)$

Goal:
- Show that $P(c) \rightarrow Q(c)$ is true with arbitrary c of the domain
- Apply universal generalization

\Rightarrow How to show that conditional statement $p \rightarrow q$ is true.
Methods of Proof

- Direct proofs (*chứng minh trực tiếp*)
- Proof by contraposition (*chứng minh phản đảo*)
- Proof by contradiction (*chứng minh phản chứng*)
- Mathematical induction (*quy nạp toán học*)
Direct Proofs

Definition

A direct proof shows that $p \rightarrow q$ is true by showing that if p is true, then q must also be true.

Example

Ex.: If n is an odd integer, then n^2 is odd.

Pr.: Assume that n is odd. By the definition, $n = 2k + 1$, $k \in \mathbb{Z}$.

$$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

is an odd number.
Proof by Contraposition

Definition

\[p \rightarrow q \] can be proved by showing (directly) that its contrapositive,
\[\neg q \rightarrow \neg p, \] is true.

Example

Ex.: If \(n \) is an integer and \(3n + 2 \) is odd, then \(n \) is odd.

Pr.: Assume that “If \(3n + 2 \) is odd, then \(n \) is odd” is false; or \(n \) is even, so \(n = 2k, k \in \mathbb{Z} \). Substituting

\[3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1) \]

is even. Because the negation of the conclusion of the conditional statement implies that the hypothesis is false, Q.E.D.
Proofs by Contradiction

Definition

p is true if if can show that $\neg p \rightarrow (r \land \neg r)$ is true for some proposition r.

Example

Ex.: Prove that $\sqrt{2}$ is irrational.

Pr.: Let p is the proposition “$\sqrt{2}$ is irrational”. Suppose $\neg p$ is true, which means $\sqrt{2}$ is rational. If so, $\exists a, b \in \mathbb{Z}, \sqrt{2} = a/b$, a, b have no common factors. Squared, $2 = a^2/b^2$, $2b^2 = a^2$, so a^2 is even, and a is even, too. Because of that $a = 2c, c \in \mathbb{Z}$. Thus, $2b^2 = 4c^2$, or $b^2 = 2c^2$, which means b^2 is even and so is b. That means 2 divides both a and b, contradict with the assumption.
Problem

Assume that we have an infinite domino string, we want to know whether every dominoes will fall, if we only know two things:

1. We can push the first domino to fall
2. If a domino falls, the next one will be fall

We can! Mathematical induction.
Mathematical Induction

Definition (Induction)

To prove that $P(n)$ is true for all positive integers n, where $P(n)$ is a propositional function, we complete two steps:

- **Basis Step**: Verify that $P(1)$ is true.
- **Inductive Step**: Show that the conditional statement $P(k) \to P(k + 1)$ is true for all positive integers k

Logic form:

$$[P(1) \land \forall k P(k) \to P(k + 1))] \to \forall n P(n)$$

What is $P(n)$ in domino string case?
Example on Induction

Example

Show that if n is a positive integer, then

$$1 + 2 + \ldots + n = \frac{n(n + 1)}{2}.$$

Solution

Let $P(n)$ be the proposition that sum of first n is $\frac{n(n + 1)}{2}$

- **Basis Step:** $P(1)$ is true, because $1 = \frac{1(1+1)}{2}$

- **Inductive Step:**
 Assume that $1 + 2 + \ldots + k = \frac{k(k+1)}{2}$.

Then:

$$1 + 2 + \ldots + k + (k + 1) = \frac{k(k + 1)}{2} + (k + 1)$$

$$= \frac{k(k + 1) + 2(k + 1)}{2}$$

$$= \frac{(k + 1)(k + 2)}{2}$$

shows that $P(k + 1)$ is true under the assumption that $P(k)$ is true.
Example on Induction

Example

Prove that \(n < 2^n \) for all positive integers \(n \).

Solution

Let \(P(n) \) be the proposition that \(n > 2^n \).

- **Basis Step:** \(P(1) \) is true, because \(1 > 2^1 = 2 \)

- **Inductive Step:**
 Assume that \(P(k) \) is true for the positive \(k \), that is, \(k < 2^k \).
 Add 1 to both side of \(k < 2^k \), note that \(1 \leq 2^k \).

\[
 k + 1 < 2^k + 1 \leq 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}.
\]

shows that \(P(k + 1) \) is true, namely, that \(k + 1 < 2^{k+1} \),
based on the assumption that \(P(k) \) is true.