Chapter 3
Relational Data Model
Content

- Introduction
- Concepts
- Constraints
- From E/R diagram to relational design
Introduction

- Was first introduced by E. F. Codd
 - “A Relation Model for Large Shared Data Banks”, Communications of ACM, 1970

- Commercial implementation
 - By IBM
 - Oracle (1979)
 - By Sybase
 - By Microsoft
 - SQL Server (1989)
 - Access (1992)
Introduction

- Open source implementation
 - MySQL
 - By MySQL AB, 1995
 - PostgreSQL
 - Ingres project at the University of California, Berkeley, 1980s
 - By many developers, released in 1996
 - SQLite
 - By D. Richard Hipp working for General Dynamics, 2000
Introduction

- Provide a simple way to represent data
 - The relation: a two-dimensional table

- The theoretical background
 - Set theory of mathematical logic
Content

- Introduction

- Concepts
 - Relation
 - Attribute
 - Schema
 - Tuple
 - Domain
 - Characteristics of relation
 - Notations

- Contraints

- From E/R diagram to relational design
Relation

- Relational model presents the DB as a collection of *relations*

 - A relation = a two-dimensional table

<table>
<thead>
<tr>
<th>FNAME</th>
<th>LNAME</th>
<th>BIRTHDATE</th>
<th>ADDRESS</th>
<th>SEX</th>
<th>SALARY</th>
<th>DNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tung</td>
<td>Nguyen</td>
<td>12/08/1955</td>
<td>638 NVC Q5</td>
<td>Nam</td>
<td>40000</td>
<td>5</td>
</tr>
<tr>
<td>Hang</td>
<td>Bui</td>
<td>07/19/1968</td>
<td>332 NTH Q1</td>
<td>Nu</td>
<td>25000</td>
<td>4</td>
</tr>
<tr>
<td>Nhu</td>
<td>Le</td>
<td>06/20/1951</td>
<td>291 HVH QPN</td>
<td>Nu</td>
<td>43000</td>
<td>4</td>
</tr>
<tr>
<td>Hung</td>
<td>Nguyen</td>
<td>09/15/1962</td>
<td>Ba Ria VT</td>
<td>Nam</td>
<td>38000</td>
<td>5</td>
</tr>
</tbody>
</table>

Relation name is EMPLOYEE
Relation

- Includes
 - Name
 - Set of columns
 - Fixed
 - Named
 - Has data types
 - Set of rows
 - Changed by time

- A row ~ A real-world entity or relationship
- A relation ~ An entity set or relationship
Attribute

- The names for columns of the relation
- Describes the meaning of entries in the column below

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNAME</td>
<td>Tung</td>
</tr>
<tr>
<td>LNAME</td>
<td>Nguyen</td>
</tr>
<tr>
<td>BIRTHDATE</td>
<td>12/08/1955</td>
</tr>
<tr>
<td>ADDRESS</td>
<td>638 NVC Q5</td>
</tr>
<tr>
<td>SEX</td>
<td>Nam</td>
</tr>
<tr>
<td>SALARY</td>
<td>40000</td>
</tr>
<tr>
<td>DNO</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNAME</td>
<td>Hang</td>
</tr>
<tr>
<td>LNAME</td>
<td>Bui</td>
</tr>
<tr>
<td>BIRTHDATE</td>
<td>07/19/1968</td>
</tr>
<tr>
<td>ADDRESS</td>
<td>332 NTH Q1</td>
</tr>
<tr>
<td>SEX</td>
<td>Nu</td>
</tr>
<tr>
<td>SALARY</td>
<td>25000</td>
</tr>
<tr>
<td>DNO</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNAME</td>
<td>Nhu</td>
</tr>
<tr>
<td>LNAME</td>
<td>Le</td>
</tr>
<tr>
<td>BIRTHDATE</td>
<td>06/20/1951</td>
</tr>
<tr>
<td>ADDRESS</td>
<td>291 HVH QPN</td>
</tr>
<tr>
<td>SEX</td>
<td>Nu</td>
</tr>
<tr>
<td>SALARY</td>
<td>43000</td>
</tr>
<tr>
<td>DNO</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FNAME</td>
<td>Hung</td>
</tr>
<tr>
<td>LNAME</td>
<td>Nguyen</td>
</tr>
<tr>
<td>BIRTHDATE</td>
<td>09/15/1962</td>
</tr>
<tr>
<td>ADDRESS</td>
<td>Ba Ria VT</td>
</tr>
<tr>
<td>SEX</td>
<td>Nam</td>
</tr>
<tr>
<td>SALARY</td>
<td>38000</td>
</tr>
<tr>
<td>DNO</td>
<td>5</td>
</tr>
</tbody>
</table>

- All values in a column are of the same data type
Schema

- Schema of a relation
 - Name
 - Set of attributes

Relation schema

EMPLOYEE(SSN, FNAME, LNAME, BIRTHDATE, ADDRESS, SEX, SALARY, DNO)

a set, not a list
Database schema

- A design consist of one or more relational schemas

Database schema

EMPLOYEE(SSN, FNAME, LNAME, BIRTHDATE, ADDRESS, SEX, SALARY, DNO)
DEPARTMENT(DNUMBER, DNAME, MGRSSN, MGRSTARTDATE)
DEPT_LOCATION(DNUMBER, DLOCATION)
DEPENDENT(SSN, DEPENDENT_NAME, Sex, BDate, Relationship)
PROJECT(PNAME, PNUMBER, PLOCATION, DNUM)
Tuple

- Row of a relation
 - Except the header row containing the attribute names

- Contains many components
 - One component for each attributes of the relation

$$\langle \text{Tung, Nguyen, 12/08/1955, 638 NVC Q5, Nam, 40000, 5} \rangle$$
Domain

- Each attribute of a relation associates with a **domain**
 - A particular elementary type

- A component of each tuple
 - Is **atomic**
 - Has a **value** that belongs to the domain of the corresponding attribute

- Example
 - FName: string, DOM(FName): the set of strings
 - Salary: integer, DOM(Salary): the set of integers
Characteristics of relation

- The order of tuples in a relation is not important

<table>
<thead>
<tr>
<th>LNAME</th>
<th>FNAME</th>
<th>BIRTHDATE</th>
<th>ADDRESS</th>
<th>SEX</th>
<th>SALARY</th>
<th>DNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nguyen</td>
<td>Tung</td>
<td>12/08/1955</td>
<td>638 NVC Q5</td>
<td>Nam</td>
<td>40000</td>
<td>5</td>
</tr>
<tr>
<td>Bui</td>
<td>Hang</td>
<td>07/19/1968</td>
<td>332 NTH Q1</td>
<td>Nu</td>
<td>25000</td>
<td>4</td>
</tr>
<tr>
<td>Le</td>
<td>Nhu</td>
<td>06/20/1951</td>
<td>291 HVH QPN</td>
<td>Nu</td>
<td>43000</td>
<td>4</td>
</tr>
<tr>
<td>Nguyen</td>
<td>Hung</td>
<td>09/15/1962</td>
<td>null</td>
<td>Nam</td>
<td>38000</td>
<td>5</td>
</tr>
</tbody>
</table>

- The order of values in a tuple is important

\(<\text{Nguyen, Tung}, 12/08/1955, 638 \text{ NVC Q5}, \text{Nam}, 40000, 5>\)

Differs from

\(<\text{Nguyen, Tung}, 12/08/1955, 638 \text{ NVC Q5}, 40000, \text{Nam}, 5>\)
Characteristics of relation

- Each value of components in a tuple
 - Atomic or
 - NULL

- Relations are sets of tuples, not lists of tuples
 - There are no identical tuples
Relational model notation

- Relation schema
 - Given $A_1, A_2, ..., A_n$ are attributes
 - Has domains $D_1, D_2, ..., D_n$ respectively
 - Is denoted by $R(A_1:D_1, A_2:D_2, ..., A_n:D_n)$

 - Example
 - EMPLOYEE(SSN:DOM(integer), FNAME:DOM(STRING), LNAME:DOM(STRING), BIRTHDAY:DOM(DATE), ADDRESS:DOM(STRING), SEX:DOM(STRING), SALARY:DOM(INTEGER), DNO:DOM(INTEGER))

- The degree of a relation is the number of attributes of its relation schema
 - EMPLOYEE is a relation schema of degree 8
Relational model notation

- Relation instances
 - A relation \(r \) of relation schema \(R(A_1, A_2, \ldots, A_n) \), denoted by \(r(R) \), is a set of tuples \(r = \{t_1, t_2, \ldots, t_k\} \)
 - Where each \(t_i \) is an ordered list of \(n \) values \(t_i = \langle v_1, v_2, \ldots, v_n \rangle \)
 - Each \(v_j \) is a member of \(\text{DOM}(A_j) \) or NULL value

<table>
<thead>
<tr>
<th>FNAME</th>
<th>LNAME</th>
<th>BIRTHDATE</th>
<th>ADDRESS</th>
<th>SEX</th>
<th>SALARY</th>
<th>DNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tung</td>
<td>Nguyen</td>
<td>12/08/1955</td>
<td>638 NVC Q5</td>
<td>Nam</td>
<td>40000</td>
<td>5</td>
</tr>
<tr>
<td>Hang</td>
<td>Bui</td>
<td>07/19/1968</td>
<td>332 NTH Q1</td>
<td>Nu</td>
<td>25000</td>
<td>4</td>
</tr>
<tr>
<td>Nhu</td>
<td>Le</td>
<td>06/20/1951</td>
<td>291 HVH QPN</td>
<td>Nu</td>
<td>43000</td>
<td>4</td>
</tr>
<tr>
<td>Hung</td>
<td>Nguyen</td>
<td>09/15/1962</td>
<td>null</td>
<td>Nam</td>
<td>38000</td>
<td>5</td>
</tr>
</tbody>
</table>
Summary of denotations

- The relation schema R of the degree n
 - $R(A_1, A_2, \ldots, A_n)$
- The attribute set of R
 - R^+
- Relations
 - R, S, P, Q
- Tuples
 - t, u, v
- The domain of the attribute A
 - $\text{DOM}(A)$
- The value at the attribute A of the t^{th} tuple
 - $t.A$ or $t[A]$
Content

- Introduction
- Concepts
- **Constraints**
 - Superkey
 - Key
 - Primary key
 - Reference
 - Foreign key
- From E/R diagram to relational design
Constraint

- Integrity constraint
 - Rules, conditions need to satisfy for all of instances of relational database

- Constraints
 - Defined when the relation schema is modeled
 - Checked when the data in relations are modified
Superkey

- **Definition**
 - Assume SK is a subset of attributes of R, SK ≠ ∅
 - SK is the super key if
 \[\forall r, \forall t_1, t_2 \in r, t_1 \neq t_2 \Rightarrow t_1[SK] \neq t_2[SK] \]
 Any two distinct tuples have the different values at the superkey

- **Remark**
 - No two tuples in any state r of R can have the same value for superkey
 - Every relation has at least one default superkey
Example

- Find all superkeys of R

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>10</td>
<td>a</td>
</tr>
<tr>
<td>x</td>
<td>2</td>
<td>20</td>
<td>a</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>40</td>
<td>b</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>40</td>
<td>c</td>
</tr>
<tr>
<td>z</td>
<td>1</td>
<td>50</td>
<td>d</td>
</tr>
</tbody>
</table>
Key

Definition
- Assume K is a subset of attributes of R, $K \neq \emptyset$
- K is a key if
 - K is a superkey of R
 - $\forall K' \subseteq K, K' \neq K', K'$ is not the superkey of R
 - $\forall K', K' \subset K, K' \subset K$, K' is not the superkey of R

Remark
- The value of a key identifies uniquely each tuple in the relation
- A key is a *property* of the relation schema
 - Time-invariant: a constraint should hold on every valid state
- A key is determined from the meaning of attributes
- A relation has more than one key
Primary key

- Designate one of the key as the primary key (PK)
 - The value for PK is constrained to be not null
 - Underline the attributes of PK when displaying its relation schema

- The choice of PK
 - Influence some implementation issues
 - Usually with a single attribute or a small number of attributes
R refers to S when
- An attribute A of a tuple in relation R receives a value from an attribute B of relation S
 - Must refer to an existing tuple

<table>
<thead>
<tr>
<th>FNAME</th>
<th>LNAME</th>
<th>BIRTHDATE</th>
<th>ADDRESS</th>
<th>SEX</th>
<th>SALARY</th>
<th>DNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tung</td>
<td>Nguyen</td>
<td>12/08/1955</td>
<td>638 NVC Q5</td>
<td>Nam</td>
<td>40000</td>
<td>5</td>
</tr>
<tr>
<td>Hang</td>
<td>Bui</td>
<td>07/19/1968</td>
<td>332 NTH Q1</td>
<td>Nu</td>
<td>25000</td>
<td>4</td>
</tr>
<tr>
<td>Nhu</td>
<td>Le</td>
<td>06/20/1951</td>
<td>291 HVH QPN</td>
<td>Nu</td>
<td>43000</td>
<td>4</td>
</tr>
<tr>
<td>Hung</td>
<td>Nguyen</td>
<td>09/15/1962</td>
<td>Ba Ria VT</td>
<td>Nam</td>
<td>38000</td>
<td>5</td>
</tr>
</tbody>
</table>

S
- DNAME: Nghien cuu
 - DNUMBER: 5
Foreign key

- Examine two relation schemas R and S
 - Assume FK is a set of attributes of R, FK ≠ ∅
 - FK is a foreign key of R if
 - Attributes in FK have the same domains as the primary key attributes PK of S
 - A value of FK in a tuple t₁ ∈ R
 * Either is a value of PK for some tuple t₂ ∈ S
 * Or is null

- Example

 EMPLOYEE(SSN, FNAME, LNAME, BIRTHDATE, ADDRESS, SEX, SALARY, DNO)

 DEPARTMENT(DNAME, DNUMBER)
Foreign key

- Remark
 - An attribute can both participate in PK and participate in FK
 - A FK can refer to its own relation
 - Many FKS might refer to the same primary key
 - Referential constraint = Foreign key constraint
Example
Content

- Introduction
- Concepts
- Constraints

- From E/R diagrams to relational design
 - Rules
Rules

- (1) Entity set
 - Turn each entity set (except weak entity set) into a relation with the same set of attributes
(2) Relationship
- (2a) Many-Many
 - Create a new relation
 * Relation name is the name of the relationship
 * Attributes are the key attributes of connected entity sets
Rules

- (2) Relation
 - (2b) One-Many
 - Adding the key of the many-relation to the one-relation

\[\text{EMPLOYEE(}SSN, \text{ FNAME, LNAME, BIRTHDATE, ADDRESS, SEX, SALARY, DNUMBER)} \]
Rules

- (2) Relationship
 - (2c) One-One
 - Either adding the key of a relation to another relation
 - Or adding the key to both relations

DEPARTMENT (DNUMBER, DNAME, SSN, STARTDATE)
Rules

- (3) Weak entity set
 - Turn into a relation
 - Has the same name
 - Add the key of related entity sets

Diagram:
- EMPLOYEE
 - SSN
 - LNAME
 - FNAME
 - SEX
 - BIRTHDATE
 - SALARY
 - ADDRESS

- DEPENDENT
 - SSN, NAME, SEX, BIRTHDATE, RELATIONSHIP

- Dependents_of
 - (1,1)
 - (1,n)

Note:
- CuuDuongThanCong.com
- https://fb.com/tailieudientucntt
(4) Subclass
- Turn into a relation
 • Has the same name
 • Add the key of the superclass