15.2 Exercises

1–2 Find \(\int_0^2 f(x,y) \, dx \) and \(\int_0^2 f(x,y) \, dy \).

1. \(f(x,y) = 12x^2y^3 \)
2. \(f(x,y) = y + xe^y \)

3–14 Calculate the iterated integral.

3. \(\int_0^2 \int_0^1 (6x^3y - 2x) \, dy \, dx \)
4. \(\int_0^\pi \int_0^1 (4x^2 - 9x^2y^2) \, dy \, dx \)
5. \(\int_0^2 \int_0^1 y^3e^{4x} \, dy \, dx \)
6. \(\int_0^{\pi/2} \int_0^1 \cos y \, dx \, dy \)
7. \(\int_0^3 \int_0^1 (y + y^2 \cos x) \, dx \, dy \)
8. \(\int_0^3 \int_1^1 \ln y \, dx \, dy \)
9. \(\int_0^1 \int_0^1 \left(\frac{x}{y} + \frac{y}{x} \right) \, dy \, dx \)
10. \(\int_0^1 \int_0^1 e^{-y^2} \, dx \, dy \)
11. \(\int_0^1 \int_0^1 x^2 \, dx \, dy \)
12. \(\int_0^1 \int_0^1 xy \sqrt{x^2 + y^2} \, dx \, dy \)
13. \(\int_0^2 \int_0^2 r \sin^2 \theta \, dr \, d\theta \)
14. \(\int_0^2 \int_0^2 \sqrt{5 + r} \, ds \, dt \)

15–22 Calculate the double integral.

15. \(\int_A \sin(x - y) \, da \), \(R = \{(x,y) \mid 0 \leq x \leq \pi/2, 0 \leq y \leq \pi/2\} \)
16. \(\int_A (y + xy^2) \, da \), \(R = \{(x,y) \mid 0 \leq x \leq 2, 1 \leq y \leq 2\} \)
17. \(\int_A \frac{xy^2}{x^2 + 1} \, da \), \(R = \{(x,y) \mid 0 \leq x \leq 1, -3 \leq y \leq 3\} \)

23–24 Sketch the solid whose volume is given by the iterated integral.

23. \(\int_0^1 \int_0^1 (4 - x - 2y) \, dy \, dx \)
24. \(\int_0^1 \int_0^1 (2 - x^2 - y^2) \, dy \, dx \)

25. Find the volume of the solid that lies under the plane \(4x + 6y - 2z + 15 = 0 \) and above the rectangle \(R = \{(x,y) \mid -1 \leq x \leq 2, -1 \leq y \leq 1\} \).

26. Find the volume of the solid that lies under the hyperbolic paraboloid \(z = 3y^2 - x^2 + 2 \) and above the rectangle \(R = [-1, 1] \times [1, 2] \).
27. Find the volume of the solid lying under the elliptic paraboloid \(z = \frac{x^2}{4} + \frac{y^2}{9} \) and above the rectangle \(R = [-1, 1] \times [-2, 2] \).

28. Find the volume of the solid enclosed by the surface \(z = 1 + e^x \sin y \) and the planes \(x = 1, y = 0, y = \pi \), and \(z = 0 \).

29. Find the volume of the solid enclosed by the surface \(z = x \sec^2 y \) and the planes \(z = 0, x = 0, x = 2, y = 0 \), and \(y = \pi/4 \).

30. Find the volume of the solid in the first octant bounded by the cylinder \(z = 16 - x^2 \) and the plane \(y = 5 \).

31. Find the volume of the solid enclosed by the paraboloid \(z = 2 + x^2 + (y - 2)^2 \) and the planes \(z = 1, x = 1, \) \(x = -1, y = 0, \) and \(y = 4 \).

32. Graph the solid that lies between the surface \(z = \frac{xy}{x^2 + 1} \) and the plane \(z = x + 2y \) and is bounded by the planes \(x = 0, x = 2, y = 0, \) and \(y = 4 \). Then find its volume.

CAS 33. Use a computer algebra system to find the exact value of the integral \(\int_0^1 \int_0^1 \frac{x - y}{(x + y)^3} \, dx \, dy \) and \(\int_0^1 \int_0^1 \frac{x - y}{(x + y)^3} \, dx \, dy \). Do the answers contradict Fubini’s Theorem? Explain what is happening.

34. Graph the solid that lies between the surfaces \(z = e^{-z} \cos(x^2 + y^2) \) and \(z = 2 - x^2 - y^2 \) for \(|x| \leq 1 \), \(|y| \leq 1 \). Use a computer algebra system to approximate the volume of this solid correct to four decimal places.

35–36 Find the average value of \(f \) over the given rectangle.

35. \(f(x, y) = x^2 \) \(R \) has vertices \((-1, 0), (-1, 5), (1, 5), (1, 0)\)

36. \(f(x, y) = e^{\sqrt{x} + \sqrt{y}} \) \(R = [0, 4] \times [0, 1] \)

37–38 Use symmetry to evaluate the double integral.

37. \(\int_0^1 \int_1^2 \frac{xy}{1 + x^4} \, dA, \) \(R = \{(x, y) \mid -1 \leq x \leq 1, 0 \leq y \leq 1\} \)

38. \(\int_1^2 \int_1^2 \frac{x}{1 + x^4} \, dA, \) \(R = [-\pi, \pi] \times [-\pi, \pi] \)

CAS 39. Use your CAS to compute the iterated integrals

\[
\int_0^1 \int_0^1 \frac{x - y}{(x + y)^3} \, dx \, dy \quad \text{and} \quad \int_0^1 \int_0^1 \frac{x - y}{(x + y)^3} \, dx \, dy
\]

For single integrals, the region over which we integrate is always an interval. But for double integrals, we want to be able to integrate a function \(f \) not just over rectangles but also over regions \(D \) of more general shape, such as the one illustrated in Figure 1. We suppose that \(D \) is a bounded region, which means that \(D \) can be enclosed in a rectangular region \(R \) as in Figure 2. Then we define a new function \(F \) with domain \(R \) by

\[
F(x, y) = \begin{cases}
 f(x, y) & \text{if (x, y) is in } D \\
 0 & \text{if (x, y) is in } R \text{ but not in } D
\end{cases}
\]