Computer Networks 1
(Mạng Máy Tính 1)

Lectured by: Dr. Phạm Trần Vũ
Course details

- Number of credits: 4
- Study time allocation per week:
 - 3 lecture hours for theory
 - 2 lecture hours for exercises and lab work
 - 8 hours for self-study
- Website:
 - http://www.cse.hcmut.edu.vn/~ptvu/net1/
 - Cuu Duong Than Cong . com
 - https://fb.com/tailieudientucmt
Course outline (1)

- Fundamental concepts in the design and implementation of computer networks
 - Protocols, standards and applications
 - Introduction to network programming.
Course outline (2)

- The topics to be covered include:
 - Introduction to network architecture, OSI and the TCP/IP reference models.
 - Network technologies, especially LAN technologies (Ethernet, wireless networks and Bluetooth).
 - Issues related to routing and internetworking, Internet addressing and routing.
 - Internet transport protocols (UDP and TCP)
 - Network-programming interface
 - Application layer protocols and applications such as DNS, E-mail, and WWW.
References

Assessment

- Assignment 20%
 - Two assignments, 10% each
- Midterm exam: 20%
- Final exam: 60%
- Laboratory work is compulsory
 - No lab work = No assignment mark
Chapter 1
Introduction

Jim Kurose, Keith Ross
Addison-Wesley, April 2009.

All material copyright 1996-2009
J.F Kurose and K.W. Ross, All Rights Reserved
Chapter 1: Introduction

Our goal:
- get "feel" and terminology
- more depth, detail later in course
- approach:
 - use Internet as example

Overview:
- what's the Internet?
- what's a protocol?
- network edge: hosts, access network, physical media
- network core: packet/circuit switching, Internet structure
- performance: loss, delay, throughput
- security
- protocol layers, service models
- history
Chapter 1: roadmap

1.1 What is the Internet?
1.2 Network edge
 - end systems, access networks, links
1.3 Network core
 - circuit switching, packet switching, network structure
1.4 Delay, loss and throughput in packet-switched networks
1.5 Protocol layers, service models
1.6 Networks under attack: security
1.7 History
What’s the Internet: “nuts and bolts” view

- millions of connected computing devices: hosts = end systems
 - running network apps
- communication links
 - fiber, copper, radio, satellite
 - transmission rate = bandwidth
- routers: forward packets (chunks of data)
“Cool” internet appliances

IP picture frame
http://www.ceiva.com/

World’s smallest web server
http://www-ccs.cs.umass.edu/~shri/iPic.html

Web-enabled toaster + weather forecaster

Internet phones

CuuDuongThanCong.com
https://fb.com/tailieudientucntt
What's the Internet: “nuts and bolts” view

- **Protocols** control sending, receiving of msgs
 - e.g., TCP, IP, HTTP, Skype, Ethernet

- **Internet:** “network of networks”
 - loosely hierarchical
 - public Internet versus private intranet

- **Internet standards**
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force
What's the Internet: a service view

- communication infrastructure enables distributed applications:
 - Web, VoIP, email, games, e-commerce, file sharing

- communication services provided to apps:
 - reliable data delivery from source to destination
 - “best effort” (unreliable) data delivery
What’s a protocol?

human protocols:
- “what’s the time?”
- “I have a question”
- introductions

... specific msgs sent

... specific actions taken when msgs received, or other events

network protocols:
- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt
What's a protocol?

A human protocol and a computer network protocol:

Q: Other human protocols?
Chapter 1: roadmap

1.1 What is the Internet?

1.2 Network edge
 - end systems, access networks, links

1.3 Network core
 - circuit switching, packet switching, network structure

1.4 Delay, loss and throughput in packet-switched networks

1.5 Protocol layers, service models

1.6 Networks under attack: security

1.7 History
A closer look at network structure:

- **network edge:** applications and hosts
- **access networks,** physical media: wired, wireless communication links
- **network core:**
 - interconnected routers
 - network of networks
The network edge:

- **end systems (hosts):**
 - run application programs
 - e.g. Web, email
 - at “edge of network”

- **client/server model**
 - client host requests, receives service from always-on server
 - e.g. Web browser/server; email client/server

- **peer-peer model:**
 - minimal (or no) use of dedicated servers
 - e.g. Skype, BitTorrent
Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks

Keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?
Dial-up Modem

- Uses existing telephony infrastructure
 - Home is connected to central office
 - up to 56Kbps direct access to router (often less)
 - Can’t surf and phone at same time: not “always on”
Digital Subscriber Line (DSL)

- Also uses existing telephone infrastructure
- up to 1 Mbps upstream (today typically < 256 kbps)
- up to 8 Mbps downstream (today typically < 1 Mbps)
- dedicated physical line to telephone central office
Residential access: cable modems

- Does not use telephone infrastructure
 - Instead uses cable TV infrastructure
- HFC: hybrid fiber coax
 - Asymmetric: up to 30Mbps downstream, 2 Mbps upstream
- Network of cable and fiber attaches homes to ISP router
 - Homes share access to router
 - Unlike DSL, which has dedicated access
Residential access: cable modems

Diagram: http://www.cabledatacomnews.com/cmic/diagram.html

CuuDuongThanCong.com

https://fb.com/tailieudientucntt
Cable Network Architecture: Overview

Typically 500 to 5,000 homes

cable headend

cable distribution network (simplified)

home
Cable Network Architecture: Overview
Cable Network Architecture: Overview
Cable Network Architecture: Overview

FDM (more shortly):

[Diagram showing cable network architecture with channels and homes]
Fiber to the Home

- Optical links from central office to the home
- Two competing optical technologies:
 - Passive Optical network (PON)
 - Active Optical Network (PAN)
- Much higher Internet rates; fiber also carries television and phone services
 Ethernet Internet access

- Typically used in companies, universities, etc
- 10 Mbs, 100Mbps, 1Gbps, 10Gbps Ethernet
- Today, end systems typically connect into Ethernet switch
Wireless access networks

- **shared wireless access** network connects end system to router
 - via base station aka “access point”

- **wireless LANs:**
 - 802.11b/g (WiFi): 11 or 54 Mbps

- **wider-area wireless access**
 - provided by telco operator
 - ~1Mbps over cellular system (EVDO, HSDPA)
 - next up (?): WiMAX (10’s Mbps) over wide area
Home networks

Typical home network components:
- DSL or cable modem
- router/firewall/NAT
- Ethernet
- wireless access point

![Diagram of a home network system]
Physical Media

- **Bit**: propagates between transmitter/rcvr pairs
- **physical link**: what lies between transmitter & receiver
- **guided media**:
 - signals propagate in solid media: copper, fiber, coax
- **unguided media**:
 - signals propagate freely, e.g., radio

Twisted Pair (TP)

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps Ethernet
 - Category 5: 100Mbps Ethernet
Physical Media: coax, fiber

Coaxial cable:
- two concentric copper conductors
- bidirectional
- baseband:
 - single channel on cable
 - legacy Ethernet
- broadband:
 - multiple channels on cable
 - HFC

Fiber optic cable:
- glass fiber carrying light pulses, each pulse a bit
- high-speed operation:
 - high-speed point-to-point transmission (e.g., 10’s-100’s Gps)
- low error rate: repeaters spaced far apart; immune to electromagnetic noise
Physical media: radio

- Signal carried in electromagnetic spectrum
- No physical “wire”
- Bidirectional

Propagation environment effects:
- Reflection
- Obstruction by objects
- Interference

Radio link types:
- Terrestrial microwave
 - E.g. up to 45 Mbps channels
- LAN (e.g., Wifi)
 - 11 Mbps, 54 Mbps
- Wide-area (e.g., cellular)
 - 3G cellular: ~ 1 Mbps
- Satellite
 - Kbps to 45 Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - Geosynchronous versus low altitude
Chapter 1: roadmap

1.1 What is the Internet?

1.2 Network edge
 - end systems, access networks, links

1.3 Network core
 - circuit switching, packet switching, network structure

1.4 Delay, loss and throughput in packet-switched networks

1.5 Protocol layers, service models

1.6 Networks under attack: security

1.7 History
The Network Core

- mesh of interconnected routers

- the fundamental question: how is data transferred through the net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete “chunks”
Network Core: Circuit Switching

End-end resources reserved for “call”

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required
Network Core: Circuit Switching

network resources (e.g., bandwidth) divided into “pieces”
- pieces allocated to calls
- resource piece *idle* if not used by owning call (*no sharing*)

- dividing link bandwidth into “pieces”
 - frequency division
 - time division
Circuit Switching: FDM and TDM

FDM

Example:
4 users

TDM
Numerical example

- How long does it take to send a file of 640,000 bits from host A to host B over a circuit-switched network?
 - All links are 1.536 Mbps
 - Each link uses TDM with 24 slots/sec
 - 500 msec to establish end-to-end circuit

Let's work it out!
Network Core: Packet Switching

Each end-end data stream divided into *packets*

- user A, B packets *share* network resources
- each packet uses full link bandwidth
- resources used *as needed*

Resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - Node receives complete packet before forwarding

Bandwidth division into “pieces”

- Dedicated allocation
- Resource reservation
Packet Switching: Statistical Multiplexing

Sequence of A & B packets does not have fixed pattern, bandwidth shared on demand \(\Rightarrow\) **statistical multiplexing**.

TDM: each host gets same slot in revolving TDM frame.
Packet-switching: store-and-forward

- takes \(L/R \) seconds to transmit (push out) packet of \(L \) bits on to link at \(R \) bps

- **store and forward**: entire packet must arrive at router before it can be transmitted on next link

- delay = \(3L/R \) (assuming zero propagation delay)

Example:
- \(L = 7.5 \) Mbits
- \(R = 1.5 \) Mbps
- transmission delay = 15 sec

more on delay shortly ...
Packet switching versus circuit switching

Packet switching allows more users to use network!

- 1 Mb/s link
- each user:
 - 100 kb/s when “active”
 - active 10% of time

- circuit-switching:
 - 10 users

- packet switching:
 - with 35 users, probability > 10 active at same time is less than .0004

Q: how did we get value 0.0004?
Packet switching versus circuit switching

Is packet switching a “slam dunk winner?”

- great for bursty data
 - resource sharing
 - simpler, no call setup
- excessive congestion: packet delay and loss
 - protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - still an unsolved problem (chapter 7)

Q: human analogies of reserved resources (circuit switching) versus on-demand allocation (packet-switching)?
Internet structure: network of networks

- roughly hierarchical
- at center: “tier-1” ISPs (e.g., Verizon, Sprint, AT&T, Cable and Wireless), national/international coverage
 - treat each other as equals
Tier-1 ISP: e.g., Sprint

POP: point-of-presence

to/from backbone

peering

to/from customers
Internet structure: network of networks

- “Tier-2” ISPs: smaller (often regional) ISPs
 - Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Tier-2 ISP pays tier-1 ISP for connectivity to rest of Internet
- tier-2 ISP is customer of tier-1 provider

Tier-2 ISPs also peer privately with each other.
Internet structure: network of networks

- “Tier-3” ISPs and local ISPs
 - last hop ("access") network (closest to end systems)

Local and tier-3 ISPs are customers of higher tier ISPs connecting them to rest of Internet
Internet structure: network of networks

- a packet passes through many networks!
Chapter 1: roadmap

1.1 What is the Internet?
1.2 Network edge
 - end systems, access networks, links
1.3 Network core
 - circuit switching, packet switching, network structure
1.4 Delay, loss and throughput in packet-switched networks
1.5 Protocol layers, service models
1.6 Networks under attack: security
1.7 History
How do loss and delay occur?

- packets *queue* in router buffers
 - packet arrival rate to link exceeds output link capacity
 - packets queue, wait for turn

packet being transmitted (delay)

packets queueing (delay)

free (available) buffers: arriving packets dropped *(loss)* if no free buffers
Four sources of packet delay

1. Nodal processing:
 - Check bit errors
 - Determine output link

2. Queueing:
 - Time waiting at output link for transmission
 - Depends on congestion level of router
Delay in packet-switched networks

3. Transmission delay:
- \(R = \text{link bandwidth (bps)} \)
- \(L = \text{packet length (bits)} \)
- time to send bits into link = \(L/R \)

4. Propagation delay:
- \(d = \text{length of physical link} \)
- \(s = \text{propagation speed in medium (~}2\times10^8 \text{ m/sec)} \)
- propagation delay = \(d/s \)

Note: \(s \) and \(R \) are very different quantities!
Caravan analogy

- cars “propagate” at 100 km/hr
- toll booth takes 12 sec to service car (transmission time)
- car~bit; caravan ~ packet
- Q: How long until caravan is lined up before 2nd toll booth?

- Time to “push” entire caravan through toll booth onto highway = 12*10 = 120 sec
- Time for last car to propagate from 1st to 2nd toll both: 100km/(100km/hr)= 1 hr
- A: 62 minutes
Caravan analogy (more)

- Cars now "propagate" at 1000 km/hr
- Toll booth now takes 1 min to service a car
- Q: Will cars arrive to 2nd booth before all cars serviced at 1st booth?

- Yes! After 7 min, 1st car at 2nd booth and 3 cars still at 1st booth.
- 1st bit of packet can arrive at 2nd router before packet is fully transmitted at 1st router!
 - See Ethernet applet at AWL Web site
Nodal delay

\[d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}} \]

- \(d_{\text{proc}} = \) processing delay
 - typically a few microsecs or less
- \(d_{\text{queue}} = \) queuing delay
 - depends on congestion
- \(d_{\text{trans}} = \) transmission delay
 - = L/R, significant for low-speed links
- \(d_{\text{prop}} = \) propagation delay
 - a few microsecs to hundreds of msecs
Queueing delay (revisited)

- $R =$ link bandwidth (bps)
- $L =$ packet length (bits)
- $a =$ average packet arrival rate

Traffic intensity = $\frac{La}{R}$

- $\frac{La}{R} \sim 0$: average queueing delay small
- $\frac{La}{R} \rightarrow 1$: delays become large
- $\frac{La}{R} > 1$: more "work" arriving than can be serviced, average delay infinite!
“Real” Internet delays and routes

- What do “real” Internet delay & loss look like?
- **Traceroute program:** provides delay measurement from source to router along end-end Internet path towards destination. For all i:
 - sends three packets that will reach router i on path towards destination
 - router i will return packets to sender
 - sender times interval between transmission and reply.
“Real” Internet delays and routes

traceroute: gaia.cs.umass.edu to www.eurecom.fr

1 cs-gw (128.119.240.254) 1 ms 1 ms 2 ms
2 border1-rt-fa5-1-0.gw.umass.edu (128.119.3.145) 1 ms 1 ms 2 ms
3 cht-vbns.gw.umass.edu (128.119.3.130) 6 ms 5 ms 5 ms
4 jn1-at1-0-0-19.wor vbns.net (204.147.132.129) 16 ms 11 ms 13 ms
5 jn1-so7-0-0-0.wae.vnbs.net (204.147.136.136) 21 ms 18 ms 18 ms
6 abilene-vbns.abilene.ucaid.edu (198.32.11.9) 22 ms 18 ms 22 ms
7 nycm-wash.abilene.ucaid.edu (198.32.8.46) 22 ms 22 ms 22 ms
8 62.40.103.253 (62.40.103.253) 104 ms 109 ms 106 ms
9 de2-1.de1.de.geant.net (62.40.96.129) 109 ms 102 ms 104 ms
10 de.fr1.fr.geant.net (62.40.96.50) 113 ms 121 ms 114 ms
11 renater-gw.fr1.fr.geant.net (62.40.103.54) 112 ms 114 ms 112 ms
12 nio-n2.cssi.renater.fr (193.51.206.13) 111 ms 114 ms 116 ms
13 nice.cssi.renater.fr (195.220.98.102) 123 ms 125 ms 124 ms
14 r3t2-nice.cssi.renater.fr (195.220.98.110) 126 ms 126 ms 124 ms
15 eurecom-valbonne.r3t2.ft.net (193.48.50.54) 135 ms 128 ms 133 ms
16 194.214.211.25 (194.214.211.25) 126 ms 128 ms 126 ms
17 ***
18 ***
19 fantasia.eurecom.fr (193.55.113.142) 132 ms 128 ms 136 ms

* means no response (probe lost, router not replying)
Packet loss

- queue (aka buffer) preceding link in buffer has finite capacity
- packet arriving to full queue dropped (aka lost)
- lost packet may be retransmitted by previous node, by source end system, or not at all
Throughput

- **throughput**: rate (bits/time unit) at which bits transferred between sender/receiver
 - *instantaneous*: rate at given point in time
 - *average*: rate over longer period of time

![Diagram of server, pipe, and client](image-url)

- server sends bits (fluid) into pipe
- pipe that can carry fluid at rate \(R_s \) bits/sec
- pipe that can carry fluid at rate \(R_c \) bits/sec

[Link to Facebook](https://fb.com/tailieudientucntt)
Throughput (more)

- $R_S < R_C$ What is average end-end throughput?

- $R_S > R_C$ What is average end-end throughput?

bottleneck link

link on end-end path that constrains end-end throughput
Throughput: Internet scenario

- per-connection end-to-end throughput:
 \[\min(R_c, R_s, R/10) \]

- in practice: \(R_c \) or \(R_s \) is often bottleneck

10 connections (fairly) share backbone bottleneck link \(R \) bits/sec
Chapter 1: roadmap

1.1 What is the Internet?
1.2 Network edge
 - end systems, access networks, links
1.3 Network core
 - circuit switching, packet switching, network structure
1.4 Delay, loss and throughput in packet-switched networks
1.5 Protocol layers, service models
1.6 Networks under attack: security
1.7 History
Protocol “Layers”

Networks are complex!

- many “pieces”:
 - hosts
 - routers
 - links of various media
 - applications
 - protocols
 - hardware, software

Question:
Is there any hope of organizing structure of network?

Or at least our discussion of networks?
Organization of air travel

- ticket (purchase)
- baggage (check)
- gates (load)
- runway takeoff
- airplane routing

- ticket (complain)
- baggage (claim)
- gates (unload)
- runway landing
- airplane routing

- a series of steps
Layering of airline functionality

Layers: each layer implements a service
- via its own internal-layer actions
- relying on services provided by layer below
Why layering?

Dealing with complex systems:

- explicit structure allows identification, relationship of complex system’s pieces
 - layered *reference model* for discussion
- modularization eases maintenance, updating of system
 - change of implementation of layer’s service transparent to rest of system
 - e.g., change in gate procedure doesn’t affect rest of system
- layering considered harmful?
Internet protocol stack

- **application**: supporting network applications
 - FTP, SMTP, HTTP

- **transport**: process-process data transfer
 - TCP, UDP

- **network**: routing of datagrams from source to destination
 - IP, routing protocols

- **link**: data transfer between neighboring network elements
 - PPP, Ethernet

- **physical**: bits “on the wire”
ISO/OSI reference model

- **presentation**: allow applications to interpret meaning of data, e.g., encryption, compression, machine-specific conventions

- **session**: synchronization, checkpointing, recovery of data exchange

- Internet stack “missing” these layers!
 - these services, *if needed*, must be implemented in application
 - needed?
Chapter 1: roadmap

1.1 What is the Internet?
1.2 Network edge
 - end systems, access networks, links
1.3 Network core
 - circuit switching, packet switching, network structure
1.4 Delay, loss and throughput in packet-switched networks
1.5 Protocol layers, service models
1.6 Networks under attack: security
1.7 History
Network Security

- The field of network security is about:
 - how bad guys can attack computer networks
 - how we can defend networks against attacks
 - how to design architectures that are immune to attacks

- Internet not originally designed with (much) security in mind
 - original vision: “a group of mutually trusting users attached to a transparent network” 😊
 - Internet protocol designers playing “catch-up”
 - Security considerations in all layers!
Bad guys can put malware into hosts via Internet

- Malware can get in host from a virus, worm, or trojan horse.

- Spyware malware can record keystrokes, web sites visited, upload info to collection site.

- Infected host can be enrolled in a botnet, used for spam and DDoS attacks.

- Malware is often self-replicating: from an infected host, seeks entry into other hosts.
Bad guys can put malware into hosts via Internet

- **Trojan horse**
 - Hidden part of some otherwise useful software
 - Today often on a Web page (Active-X, plugin)

- **Virus**
 - Infection by receiving object (e.g., e-mail attachment), actively executing
 - Self-replicating: propagate itself to other hosts, users

- **Worm**
 - Infection by passively receiving object that gets itself executed
 - Self-replicating: propagates to other hosts, users

Sapphire Worm: aggregate scans/sec in first 5 minutes of outbreak (CAIDA, UWisc data)
Bad guys can attack servers and network infrastructure

- Denial of service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

1. select target
2. break into hosts around the network (see botnet)
3. send packets toward target from compromised hosts
The bad guys can sniff packets

Packet sniffing:

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g., including passwords!) passing by

- Wireshark software used for end-of-chapter labs is a (free) packet-sniffer
The bad guys can use false source addresses

- **IP spoofing**: send packet with false source address
The bad guys can record and playback

- **record-and-playback**: sniff sensitive info (e.g., password), and use later
 - password holder is that user from system point of view
Network Security

- more throughout this course
- chapter 8: focus on security
- cryptogaphic techniques: obvious uses and not so obvious uses
Chapter 1: roadmap

1.1 What is the Internet?
1.2 Network edge
 - end systems, access networks, links
1.3 Network core
 - circuit switching, packet switching, network structure
1.4 Delay, loss and throughput in packet-switched networks
1.5 Protocol layers, service models
1.6 Networks under attack: security
1.7 History
Internet History

1961-1972: Early packet-switching principles

- **1961**: Kleinrock - queueing theory shows effectiveness of packet-switching
- **1964**: Baran - packet-switching in military nets
- **1967**: ARPAnet conceived by Advanced Research Projects Agency
- **1969**: first ARPAnet node operational

- **1972**:
 - ARPAnet public demonstration
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes
Internet History

1972-1980: Internetworking, new and proprietary nets

- **1970**: ALOHAnet satellite network in Hawaii
- **1974**: Cerf and Kahn - architecture for interconnecting networks
- **1976**: Ethernet at Xerox PARC
- **1979**: ARPAnet has 200 nodes

Cerf and Kahn’s internetworking principles:
- minimalism, autonomy - no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control define today’s Internet architecture

1972-1980: Internetworking, new and proprietary nets
Internet History

1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1985: ftp protocol defined
- 1988: TCP congestion control
- New national networks: Csnet, BITnet, NSFnet, Minitel
- 100,000 hosts connected to confederation of networks
Internet History

1990, 2000’s: commercialization, the Web, new apps

- Early 1990’s: ARPAnet decommissioned
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960’s]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990’s: commercialization of the Web

Late 1990’s - 2000’s:
- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps
Internet History

2007:
- ~500 million hosts
- Voice, Video over IP
- P2P applications: BitTorrent (file sharing) Skype (VoIP), PPLive (video)
- more applications: YouTube, gaming
- wireless, mobility
Introduction: Summary

Covered a “ton” of material!
- Internet overview
- what’s a protocol?
- network edge, core, access network
 - packet-switching versus circuit-switching
 - Internet structure
- performance: loss, delay, throughput
- layering, service models
- security
- history

You now have:
- context, overview, “feel” of networking
- more depth, detail to follow!