Chapter 1
Overview of Database
Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages
Introduction

Examples

- Banking and finance
 - Customer information, accounts, loans, banking transactions
 - Information of holdings, sales and purchases

- Education
 - Student information, course registrations and grades

- Airline
 - Reservations and information of flights and ticket prices

- Human resources
 - Information about employees, salaries, payroll taxes

- ...
Introduction

- Data
 - Facts that can be recorded and have meaning
 - Pieces of data are individual pieces of information

- Example
 - Name, address, phone number of customers
 - Name, address, salary, tax status of employees
 - Printing of reports such as sale, purchase, bill…
 - Tracking inventories of items in warehouses/stores
 - …
Introduction

- Database (DB)
 - A collection of related data
 - Contains information relevant to an enterprise

- Example: Corporate records
 - Sale, purchase
 - Payable and receivable accounts
 - Employees
 - Printing of employee’s weekly paychecks
Introduction

- Database (DB)
 - Represents some aspect of the real world
 - A logically coherent collection of data with some inherent meaning
 - Random assortment of data cannot correctly be a database
 - Is designed, built, and populated with data for a specific purpose, for intended group of users or applications
Introduction

- Database Management System (DBMS)
 - A collection of programs that enables users to create and maintain a database

- A general-purpose software system that facilitates
 - **Definition** – specifying the data types, structures, and constraints for the data
 - **Construction** – storing the data itself on some storage medium
 - **Manipulation** – querying the database to retrieve data, updating the database to reflect changes, generating reports from the data
 - **Sharing** – allowing multiple users/programs to access the database concurrently
Introduction

- Database System

![Diagram showing the components of a database system including Users/Programmers, Applications/Queries, DBMS, Query/Program Processing, Data Accessing, Database Definition, Database, Catalog, and DB system.]
Example

Employee

<table>
<thead>
<tr>
<th>LNAME</th>
<th>MNAME</th>
<th>FNAME</th>
<th>SSN</th>
<th>BIRTHDATE</th>
<th>SUPERSSN</th>
<th>DNO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tran</td>
<td>Hong</td>
<td>Quang</td>
<td>987987987</td>
<td>03/09/1969</td>
<td>987654321</td>
<td>4</td>
</tr>
<tr>
<td>Nguyen</td>
<td>Thanh</td>
<td>Tung</td>
<td>333445555</td>
<td>12/08/1955</td>
<td>888665555</td>
<td>5</td>
</tr>
<tr>
<td>Nguyen</td>
<td>Manh</td>
<td>Hung</td>
<td>666884444</td>
<td>09/15/1962</td>
<td>333445555</td>
<td>5</td>
</tr>
<tr>
<td>Tran</td>
<td>Thanh</td>
<td>Tam</td>
<td>453453453</td>
<td>07/31/1972</td>
<td>333445555</td>
<td>5</td>
</tr>
</tbody>
</table>

Project

<table>
<thead>
<tr>
<th>PNAME</th>
<th>PNUMBER</th>
<th>PLOCATION</th>
<th>DNUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>San pham X</td>
<td>1</td>
<td>VUNG TAU</td>
<td>5</td>
</tr>
<tr>
<td>San pham Y</td>
<td>2</td>
<td>NHA TRANG</td>
<td>5</td>
</tr>
<tr>
<td>San pham Z</td>
<td>3</td>
<td>TP HCM</td>
<td>5</td>
</tr>
<tr>
<td>Tin hoc hoa</td>
<td>10</td>
<td>HA NOI</td>
<td>4</td>
</tr>
</tbody>
</table>

Works on

<table>
<thead>
<tr>
<th>SSN</th>
<th>PNO</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>123456789</td>
<td>1</td>
<td>32.5</td>
</tr>
<tr>
<td>123456789</td>
<td>2</td>
<td>7.5</td>
</tr>
<tr>
<td>666884444</td>
<td>3</td>
<td>40.0</td>
</tr>
<tr>
<td>453453453</td>
<td>1</td>
<td>20.0</td>
</tr>
</tbody>
</table>
Example

- Company database - project management
 - Definition
 - Specify the structure of records, including data elements, data types
 - Construction
 - Store data to represent an employee, project, department... as a record
 - Manipulation
 - Querying: “Select the employees whose department is 5”
 - Updating: “Move the employee Nguyen Thanh Tung to department 1”
Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages
Evolution

- File

An application program has its own data
Evolution

- Limitations
 - Data redundancy
 - Wasted storage space
 - Opportunities of the inconsistency
 - Data sharing is limited
 - Difficult recovery
 - Low security

- But, still be used in some applications
 - Small size DB
 - Storing and accessing data only, not including other processing operations
 - Fee costs less
 - Operation or maintenance
Evolution

- Database

- Application 1
- Application 2
- Application 3

DBMS

Database
Content

- Introduction
- The evolution of database systems
- **Characteristics of the database approach**
 - Self-describing
 - Insulation between programs and data
 - Data abstraction
 - Views of data
 - Sharing of data
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages
Self-Describing

- The DB system contains not only the DB itself, but also a complete definition/description of the DB structure
- The definitions are stored in *catalog*
 - Contains information such as the structure of data, type and storage format of data items, and constraints on the data
- Information stored in catalog is called *meta-data* (data of data)
- Many applications can access to the DB
 - Refer to catalog, knowing the structure of files in specific DB (type and format of data)
Insulation

- The structure of data is stored in *catalog* separately from the access programs
 - Program-Data independence

- A little change in the structure happens
 - Application programs are rarely revised
Data abstraction

- The DB system provides a **conceptual representation** of the data to hide certain details of how the data are stored and maintained.

- **Example**
 - *Data model* is a type of data abstraction
 - Objects
 - Properties
 - Relationships
 - These logical concepts are easier for user to understand than computer storage concepts.
Views of data

- A DB has many users
- Each user may require a different *perspective or view* of the database

- A view may be
 - A subset of the database
 - Aggregate data that are derived from the database
Sharing of data

- A multiuser DBMS
 - Allows users to access the DB at the same time
 - Data for many applications are to be integrated and maintained in *a single DB*

- Using concurrency control mechanisms to access the data reasonably
 - Avoid data contention
 - Ensure the data will always be valid when they are accessed
Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach

Database users
- Database administrator (DBA)
- Database designer
- End user

- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages
Database administrator

- Many people use the same resources
 - Need a chief administrator to oversee and manage

- Responsibility
 - Administering the DB
 - Authorizing access to the DB
 - Coordinating and monitoring the use of DB
 - Acquiring software and hardware resources as needed
Database designer

- **Responsibility**
 - Identifying the data to be stored in the DB
 - Choosing appropriate structures to represent and store the DB
 - Communicating with all DB users to understand their requirements, to come up with a design that meet the requirements

- **Can be**
 - Staff of the DBA
 - Other staffs taking responsibilities after the DB designed is completed
End user

- People whose jobs require to access to the DB
 - Querying, updating, generating reports

- Categories
 - Casual end user
 - Naïve or parametric end user
 - Sophisticated end user
End user

- People whose jobs require to access to the DB
 - Querying, updating, generating reports

- Categories
 - Casual end user
 - Occasionally access the DB
 - Need different information each time
 - Use sophisticated DB query language to specify requests
 - Middle or high level manager
 - Naïve or parametric end user
 - Sophisticated end user
End user

- People whose jobs require to access to the DB
 - Querying, updating, generating reports

- Categories
 - Casual end user
 - Naïve or parametric end user
 - Constantly query and update the DB
 - Use standard types of queries and updates that have been programmed and tested
 - Employee
 - Sophisticated end user
End user

- People whose jobs require to access to the DB
 - Querying, updating, generating reports

- Categories
 - Casual end user
 - Naïve or parametric end user
 - Sophisticated end user
 - Be familiar with the facilities of the DBMS
 - Implement the applications to meet the complex requirements
 - Engineers, scientists, business analysts
Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
 - Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages
Architecture

- Three-schema architecture

External level

- End user 1
- External view 1
- ...
- External view n

Conceptual level

- Conceptual schema

Internal level

- Internal schema

The part of the DB that a particular user group is interested in

The structure of the whole DB for a community of users

Physical storage structure of the DB
Introduction

Data independence

- Logic data independence
 - The capability to change the conceptual schema without any change external schemas or application programs
 - Example
 - Adding/removing a record type or data item (expand/reduce DB)
 - Changing constrains

- Physical data independence
 - The capability to change the internal schema without having any change the conceptual schema
 - Example
 - Physical files had to be reorganized to improve the performance of retrieval or update
Architecture of a DBMS

Naive Users
- Forms

Casual Users
- Application Front ends

Application Programmers
- DML Interface
 - Plan Executor
 - Parser
 - Optimizer
 - Operator Evaluator

Database Administrator
- DDL
 - DDL Compiler
 - Data Definition Language
 - Call Language Interface

DBMS Concurrency Control
- Transaction Manager
- Lock Manager

Query Evaluation Engine
- SQL Commands

File/Access Methods
- Disk Management
- Buffer Management

System Catalog
- Index files
- Data files

SQL Commands

Data Manipulation Language

Query Evaluation Engine

Data Definition Language

Call Language Interface

DDL

Naive Users

Casual Users

Application Programmers

Database Administrator
Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages
Properties of DBMS

- **Controlling redundancy**
 - By placing all the data together, we do not have to search multiple files to collect this data

- **Data sharing**
 - In multiple user environment, concurrency data access is allowed

- **Restricting unauthorized access**
 - Users or user groups are given account numbers protected by passwords to gain access to the DB

- **Providing multiple user interfaces**
 - Provide query languages for casual users, programming language interfaces for programmers, forms and command codes for parametric users
Properties of DBMS

- Enforcing integrity constraints
 - Integrity constraints
 - Rules/conditions are derived from the meaning/semantics of the data or the miniworld it represents
 - Some constraints
 - Can be specified to the DBMS and automatically enforced
 - May have to be checked by update programs

- Providing backup and recovery
 - Provide facilities for recovering from hardware and software failures
 - Make sure the DB is restored to the state it was before
Properties of DBMS

- **Others**
 - Potential for enforcing standards
 - Permit DBA to define and enforce standards among database users in a large organization
 - Flexibility
 - It may be necessary to change the structure of a DB as requirements change without affecting the stored data and the existing application programs
 - Reduced application development time
 - Availability of up-to-date information
 - As soon as one user’s update is applied to the DB, all other users can immediately see this update
Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages
Data models

Definition
- A collection of **concepts** that can be used to describe the **structure of a DB**
 - Data types, relationships, and constraints
- Including a set of basic **operations** for specifying retrievals and updates on the DB

Categories
- High level or conceptual data models
- Representational or implementation data models
- Low level or physical data models
Data models

- High level data model
 - Provide concepts that are close to the way users perceive data
 - Eg: entity relationship model, object-oriented model…

- Implementation data model
 - Provide concepts that may be understood by end users, but that are not too far from the way data is organized within the computer
 - Eg: relational model, network and hierarchical models…

- Low level data model
 - Provide concepts the describe the details of how data is stored in the computer
Example of ER Model

ER Diagram

- **Student**
 - ID
 - Name
 - Grade
 - Major

- **Course**
 - ID
 - Name
 - Faculty
 - NoOfCredits

- **Subject**
 - ID
 - Name
 - Faculty

- **Study**
 - Mark

- **Open**
 - ID

- **Term**
 - Year
 - Instructor

Constraints:
- (0,n) relationship between **Study** and **Course**
- (1,1) relationship between **Course** and **Term**
- (0,n) relationship between **Subject** and **Open**
- (0,n) relationship between **Term** and **Open**
Example of Object-Oriented Model

- Student
 - Name
 - Grade
 - Major
 - planSchedule()
 - printReord()

- Mark
 - LabMark
 - LectureMark
 - ProjectMark
 - UpdateMark()

- Course
 - Name
 - Number
 - 0..*

- Subject
 - Name
 - Faculty
 - NoOfCredits
 - UpdateCredit()
 - 0..*
 - Constraint
 - +pre
 - 0..*
 - +post

- Study
 - 1..*
 - open
 - 0..*

Example of Object-Oriented Model

- Student
 - Name
 - Grade
 - Major
 - planSchedule()
 - printReord()

- Mark
 - LabMark
 - LectureMark
 - ProjectMark
 - UpdateMark()

- Course
 - Name
 - Number
 - 0..*

- Subject
 - Name
 - Faculty
 - NoOfCredits
 - UpdateCredit()
 - 0..*
 - Constraint
 - +pre
 - 0..*
 - +post

- Study
 - 1..*
 - open
 - 0..*
Example of relational model

Student
- **StuID**
- **Name**
- **Grade**
- **Major**

Study
- **StuID**
- **CouID**
- **LabMark**
- **LectureMark**

Course
- **CouID**
- **Number**
- **SubID**

Constraint
- **SubID**
- **PreviousID**

Subject
- **SubID**
- **Name**
- **Faculty**
- **NoOFCredits**

[CuuDuongThanhCong.com](https://fb.com/tailieudientucntt)
Example of network data model

- Student
- Subject
- Course
- Constraint

Connections:
- Student_Mark
- Subject_Open
- Result_Course
- PreSubject
- PostSubject

CuuDuongThanCong.com
https://fb.com/tailieudientucntt
Example of hierarchical data model

Level 1:

Result

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LabMark</td>
<td>LectureMark</td>
</tr>
</tbody>
</table>

Level 2:

Course

<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
</tr>
</thead>
</table>

Student

| Name | Grade | Major |

Level 3:

Subject

| Name | Faculty | NoOfCredits |

https://fb.com/tailieudientucntt
Content

- Introduction
- The evolution of database systems
- Characteristics of the database approach
- Database users
- Architecture of a DBMS
- Properties of DBMS
- Data models
- Database languages
Database language

- **DDL – Data Definition Language**
 - Identify descriptions of the schema constructs
 - Store the schema description in the DBMS catalog

- **SDL – Storage Definition Language**
 - Specify the internal schema and the mappings between two schemas

- **VDL – View Definition Language**
 - Specify user views and their mapping to the conceptual schema
Database language

- **DML – Data Manipulation Language**
 - Provide a set of operations including retrieval, insertion, deletion and modification of the data

- **Two types**
 - **High level (nonprocedural)**
 - Entered interactively from a display monitor/terminal
 - Embedded in a general-purpose programming language
 - **Low level (procedural)**
 - Must be embedded in a general-purpose programming language
Discussion

- When will we use or not use the DB approach?