Intro to Cryptography

Public-key Cryptosystems, Digital Signatures and Hash functions

Lectured by Van Nguyen - HUST
Weaknesses of symmetric cryptosystems

- Managing and distributing shared secret keys is so difficult in a model environment with too many parties and relationships
 - N parties \Rightarrow $n(n-1)/2$ relationships \Rightarrow each manages $(n-1)$ keys

- No way for digital signatures
 - No non-repudiation service
Diffie-Hellman new ideas for PKC

- In principle, a PK cryptosystem is designed for a single user, not for a pair of communicating users
 - More uses other than just encryption

- Proposed in Diffie and Hellman (1976) “New Directions in Cryptography”
 - public-key encryption schemes
 - public key distribution systems
 - Diffie-Hellman key agreement protocol
 - digital signature
Diffie-Hellman’s proposal

- Each user creates 2 keys: a secret (private) key and a public key → published for everyone to know

 - The PK is for encryption and the SK for decryption
 \[X = D(z, E(Z, X)) \]

 - The SK is for creating signatures and the PK for verifying these signatures
 \[X = E(Z, D(z, X)) \rightarrow D() \text{ for creating signatures, } E \rightarrow \text{ verifying} \]

- Also, called asymmetric key cryptosystems

 - Knowing the public-key and the cipher, it is computationally infeasible to compute the private key
Principles of designing a PK system (trapdoor)

- Using one-way function:
 - Given X, it is easy to compute $Y = f(X)$
 - Given Y it is hard to compute $X = f^{-1}(Y)$

Example:
 - Given p_1, p_2, \ldots, p_n it is easy to compute $N = p_1 * p_2 * \ldots * p_n$ but given N it is hard to find p_1, p_2, \ldots, p_n

- Such an one-way function can be used as a trapdoor to create a PKC
 - Encryption is easy
 - Decryption is difficult (if not knowing the secret key)
Merkle – Hellman’s encryption scheme using *Trapdoor Knapsack*

- 1978, Merkle & Hellman proposed an encryption scheme using this Knapsack problem:
 - Given a set of positive numbers a_i, $1 \leq i \leq n$ and $0 < T < \sum_{i=1}^{n} a_i$; Find a set of indexes $S \subseteq \{1,2,...,n\}$ such that: $\sum_{i \in S} a_i = T$
 - Example:
 - $(a_1, a_2, a_3, a_4) = (2, 3, 5, 7)$ $T = 7$.
 - There are 2 solutions: $S = (1, 3)$ as $T = a_1 + a_3$
 - and $S = (4)$ as $T = a_4$

- This is a hard problem (NP-hard):
 - No P-time algorithm has been found
 - Exhaustive search: exponential time.
Merkle – Hellman’s encryption scheme

- Consider attempts to create a PK scheme using Knapsack trapdoor; here is a first attempt
 - Select a cargo vector $a = (a_1, a_2, \ldots, a_n)$
 - Encryption: for a binary plaintext block $X = (X_1, X_2, X_3, \ldots, X_n)$ compute: $T = \sum a_i X_i$ (*)
 - Decryption: Given cipher block T, knowing vector a, find X_i that satisfy (*)

- Trapdoor: One way is definitely easy, the other is HARD

- BUT not yet a PK system, we need to make it easy for the owner who knows a secret key
Merkle – Hellman’s encryption scheme

Merkle added a trick
- using a super-increasing vector wherein the (i+1)th element is > the sum of all preceding elements (1÷i)

Using a super-increasing cargo vector, the decryption is so easy

Example

Super-increasing vector: \(a=(1,2,4,8) \)
For \(T=11 \), we easily compute \(X=(X_1,X_2,X_3,X_4) \) such that \(T=\sum a_iX_i \):

Let \(T=T_0 \)

\[
\begin{align*}
X_4 &= 1 & T_0 &= T_0 - X_4 = 3 & \Rightarrow (X_1 \ X_2 \ X_3 \ 1) \\
X_3 &= 0 & T_2 &= T_1 = 3 & \Rightarrow (X_1 \ X_2 \ 0 \ 1) \\
X_2 &= 1 & T_3 &= T_2 - 2 = 1 & \Rightarrow (X_1 \ 1 \ 0 \ 1) \\
X_1 &= 1 & & \Rightarrow (1 \ 1 \ 0 \ 1)
\end{align*}
\]
Merkle – Hellman’s encryption scheme

Exercise
Draw a diagram/pseudo-code to describe an algorithm for the decryption using a super-increasing cargo vector

To complete the PK scheme however the owner need to disguise his secret key, the super-increasing vector
Merkle – Hellman: the disguise mechanism

Creating keys:

Alice creates a super-increasing vector:

\[a' = (a_1', a_2', \ldots, a_n') \]

\(a' \) will be kept as a part of the secret key

- Then choose \(m > \sum a_i' \) to be used as the modulus and choose \(\omega \) that is relatively prime to \(m \).

- Now Alice’s public key is the vector \(a \) as the product of \(a' \) with \(\omega \)

\[a = (a_1, a_2, \ldots, a_n) \]

\[a_i = \omega \times a'_i \, (\text{mod} \, m); \, i=1,2,3 \ldots n \]

- Alice’s secret key is the triple \((a', m, \omega)\)
Merkle-Hellman scheme

- **Encryption:**
 - When Bob wants to send a message X to Alice, he computes:
 \[T = \sum a_i X_i \]

- **Decryption:**
 - When Alice receives T, she will transform the equation $T = a \times X$ into $T' = a' \times X$ as follows:
 She first computes ω^{-1} i.e. $\omega \times \omega^{-1} = 1 \mod m$, then compute $T' = T \times \omega^{-1}$ (mod m)
 - Alice *then solve* $T' = a' \times X$ using the super-increasing vector a'.

- **Why?**
 \[
 T' = T \times \omega^{-1} = \sum a_i X_i \omega^{-1} = \sum a'_i \omega X_i \omega^{-1} \\
 = \sum (a'_i \omega \omega^{-1})X_i = \sum a'_i X_i = a' \times X
 \]
Failure of Merkle-Hellman PKC

- **Brute Force Attack**
 - For whom not knowing the trapdoor \((a', m, \omega)\), decrypting requires the exhaustive search of \(2^n\) possible values of \(X\)

- **Failure of this Knapsack-based scheme (1982-1984).**
 - Shamir-Adleman showed a weakness by finding a pair \((\omega', m')\) to convert \(a\) back to \(a'\) (finding the private key from the public key)
 - 1984, Brickell announced the collapse of this Knapsack-based system by one hour of computation using Cray -1 for 40 rounds and approx. 100 weights.
Algorithm for computing modulo inverse

- Computing the inverse of ω by modulo m
 - Finding $x = \omega^{-1} \mod m$ such that $x^* \omega = 1 \mod m$
 - Many applications such as in the Knapsack trapdoor

- Based on the extended GCD algorithm or the extended Euclidean algorithm (GCD: Greatest common divisor)
 - On finding the GCD of 2 numbers n_1 và n_2, one will also compute a & b such that $\text{GCD}(n_1, n_2) = a \times n_1 + b \times n_2$.
 - If $\text{gcd}(n_1, n_2) = 1$ then this e-GCD algorithm will find a, b to meet $a \times n_1 + b \times n_2 = 1$, i.e. n_1 is the inverse of a by modulo n_2.
Homework: prove the correctness of this algorithm

- Numeric example: find the inverse of 11 by modulo 39
- Let $n_1=39$, $n_2=11$ then run the algo as in the following table:

<table>
<thead>
<tr>
<th>n_1</th>
<th>n_2</th>
<th>r</th>
<th>q</th>
<th>a_1</th>
<th>b_1</th>
<th>a_2</th>
<th>b_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>11</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>-1</td>
<td>4</td>
</tr>
</tbody>
</table>
General remarks on PKC

- Since 1976, many PKC schemes had been proposed, many were broken.

- A PKC has two main applications:
 - Hiding information (including secret communication)
 - Authentication with digital signatures

- The two algorithms that are most successful are RSA and El-Gamal.

- In general, PKC is very slow, not appropriate for on-line encryption:
 - Not used for encrypting large volumes of data but for special purposes.

- PKC and SKC are used in combination:
 - Alice and Bob use a PKC system to create a shared secret key between them, and then use a SKC system to encrypt the communicated data by using this secret key.
RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
 - Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence
Main idea

- Encryption and decryption functions are modulo exponential in the field $Z_n = \{0,1,2,..n-1\}$
 - Encryption: $Y = X^e \mod n$ (or $\pm n$)
 - $a = b \pm n \Rightarrow a = b + k \cdot n$, $a \in Z_n$, $k = 1,2,3,...$ e.g. $7 = 37 \pm 10$
 - Decryption: $X = Y^d \pm n$
 - The clue is that e & d must be selected such that $X^{ed} = X \mod n$
Main idea

- The way to create such e&d is by using this Euler theorem: \(X^{\varphi(n)} \equiv 1 \pmod{n} \)

 - \(\varphi(n) \): the size of \(Z^*_n = \{k: 0 < k < n | (k,n) = 1\} \)

 - \(\varphi(n) \) can be computed easily if knowing \(n \) factorization
 - \(n = p*q \), where \(p, q \) are primes
 \[\Rightarrow \varphi(n) = (p-1)(q-1) \]

 - First choose \(e \) then compute \(d \) s.t. \(e*d = 1 \pm \varphi(n) \)
 or \(d \equiv e^{-1} \pmod{\varphi(n)} \), which will assure that
 \[X^{ed} = X^{k\cdot\varphi(n)+1} \equiv (X^{\varphi(n)})^k \cdot X \equiv 1^k \cdot X = X \pmod{n} \]

- Note this works because we know \(n \)'s factorization
 - From \(e \) we compute \(d \equiv e^{-1} \pmod{\varphi(n)} \) since we know \(\varphi(n) \), otherwise it is computational infeasible to compute \(d \) s.t. \(X^{ed} \equiv 1 \pmod{n} \)
RSA PKC

Key generation:
- Select 2 large prime numbers of about the same size, p and q
- Compute $n = pq$, and $\Phi(n) = (q-1)(p-1)$
- Select a random integer e, $1 < e < \Phi(n)$, s.t. $\gcd(e, \Phi(n)) = 1$
- Compute d, $1 < d < \Phi(n)$ s.t. $ed \equiv 1 \mod \Phi(n)$
- Public key: (e, n) and Private key: d
 - Note: p and q must remain secret
RSA PKC (cont)

- **Encryption**
 - Given a message M, $0 < M < n$: $M \in \mathbb{Z}_n - \{0\}$
 - Use public key (e, n) compute
 $$C = M^e \mod n, \text{ i.e. } C \in \mathbb{Z}_n - \{0\}$$

- **Decryption**
 - Given a ciphertext C, use private key (d) compute $M = C^d \mod n$

- **Why work?**
 - $(M^e \mod n)^d \mod n = M^{ed} \mod n = M$
Example

■ Parameters:
 - Select \(p = 11 \) và \(q = 13 \)
 - \(n = 11 \times 13 = 143 \); \(m = (p-1)(q-1) = 10 \times 12 = 120 \)
 - Choose \(e = 37 \) \(\Rightarrow \) \(\gcd(37, 120) = 1 \)
 - Using the algo \(\gcd: e \times d = 1 \pm 120 \) \(\Rightarrow \) \(d = 13 \) (\(e \times d = 481 \))

■ To encrypt a binary string
 - Split it into segments of \(u \) bit s.t. \(2^u \leq 142 \) \(\Rightarrow \) \(u = 7 \). That is each segment present a number from 0 to 127
 - Compute \(Y = X^e \pm 143 \)
 E.g. For \(X = (0000010) = 2 \), we have
 \(Y = E_Z(X) = X^{37} = 12 \pm 143 \) \(\Rightarrow \) \(Y = (00001100) \)

■ Decryption: \(X = D_Z(Y) = 12^{13} = 2 \pm 143 \)
RSA implementation

- Execution of RSA is about thousand times slower than DES
 - Even using the fast exponential algorithm and specifically designed hardwares

- \(n, p, q \)
 - The security of RSA depends on how large \(n \) is, which is often measured in the number of bits for \(n \). Current recommendation is 1024 bits for \(n \).
 - \(p \) and \(q \) should have the same bit length, so for 1024 bits RSA, \(p \) and \(q \) should be about 512 bits.
 - \(p-q \) should not be small

- Way to select \(p \) and \(q \)
 - In general, select large numbers (some special forms), then test for primality
 - Many implementations use the Rabin-Mille test, (probabilistic test)
Factorization Problem

- Estimated time using the sieve algorithm

\[L(n) \approx 9.7 + \frac{1}{50} \log_2 n \]

- \(\log_2 n \): the number of bits in representing \(n \)

- By 1996, for \(n=200 \), \(L(n) \approx 55,000 \) years.

- Using parallel computing, one can factorize a 129-digit number in 3 months by distributing the workload to the computers through out the Internet at 1996-7

- Today, for applications requiring high security levels one should use values of in 1024-bit or even 2048-bit.

Van K Nguyen -- Dai hoc Bach khoa Ha noi
Modulo Exponential

- Fast algorithm to compute exponential in \mathbb{Z}_n (mod n):
 Computing X^α (mod n)

- Determine coefficients α_i in the binary representation of α:
 $$\alpha = \alpha_0 2^0 + \alpha_1 2^1 + \alpha_2 2^2 + \ldots + \alpha_k 2^k$$

- Loop in k rounds to compute these k modulo exponential, với $i=1,k$:
 $$X^2 = X \times X$$
 $$X^4 = X^2 \times X^2$$
 $$\ldots$$
 $$X^{2^k} = X^{2^{k-1}} \times X^{2^{k-1}}$$

- Now compute $X^\alpha \mod n$ by multiplying theses X^{2^i} computed in the previous steps but only with corresponding coefficients $\alpha_i = 1$:
 $$(X^{2^i})^{\alpha_i} = \begin{cases} 1, & \alpha_i = 0 \\ X^{2^i}, & \alpha_i = 1 \end{cases}$$
Suggested topics for Reports

- The implementation and correctness of the extended GCD algorithm
- The probabilistic primality test
- Exponential algorithms and implementation
- The correctness of RSA algorithms
- Common Attacks to RSA
Digital Signatures

Motivation
- Diffie-Hellman proposed the idea (1976)
- Simulation of the real-world into digital worlds
 - Paper contracts need signed to be valid so do electronic versions

The proofs conveyed in signatures
- Data integrity: information is original, not modified
- Authentication: The source of the info is correct, not impersonated
DS: how they work

- Digital Signature: a data string which associates a message with some originating entity.

- Digital Signature Scheme:
 - a signing algorithm: takes a message and a (private) signing key, outputs a signature
 - a verification algorithm: takes a (public) key verification key, a message, and a signature

- A DS is created based on a PK system
 - Alice signs message \(X \) by creating \(Y = D_{z_A}(X) \), so the signed document now is \((X, Y = D_{z_A}(X)) \).
 - Bob who receives \((X, Y) \), computes \(X' = E_{z_A}(Y) \) then compare if \(X = X' \) to confirm the document’s validity
Non-repudiation

- We mention more on applications of DS

Non-repudiation

- The signer can’t deny that his/her created the document
 - Only Alice knows z_A to create $(X, Y=D_{z_A}(X))$ but everyone else can verify

- So we say the DS scheme provides non-repudiation
Public notary

Motivation
- Alice may lose her secret key or someone stole it → that bad guy can impersonate Alice to create documents with Alice signatures out of Alice’s control.
- Alice can also deny a document truly signed by her in the past: Alice claims the document was impersonated by someone stealing her SK.

Solution: Public notary service
- A third party – a public notary – can be hired for important documents.
- The trusted notary also signs on the same document, that is to create his signature on the concatenation of the document and Alice’s signature.
Proof of delivery (receipts)

- Motivation
 - The sender needs proof that the receiver has already got his message.
 - The receiver can't deny that once the sender got a receipt.

- Solution: An adjudicated protocol
 - \(A \rightarrow B: \ Y = E_{Z_B}(D_{z_A}(X)) \)
 - B computes: \(X' = E_{z_A}(D_{z_B}(Y)) \)
 - When receiving \(Y \), B computes and checks if \(X' = X \) then signs on \(X' \)
 and pass to \(A \) as a receipt.
 - \(B \rightarrow A: \ Y = E_{Z_A}(D_{z_B}(X')) \)
 - By computing \(D_{z_A}(Y) \), A now gets \(D_{z_B}(X') \), a B's signature on \(X \).
 - Only when A has \(Y \) she can consider that B has received her doc.
 - Later, B can not deny receiving \(X \) since A can prove otherwise by showing \(D_{z_B}(Y) \).
Weakness of the signature scheme mentioned so far

- When using a PKC to sign X, X can be long \(\Rightarrow\) splitting into blocks and signs
 \[X = (X_1, X_2, X_3, \ldots X_t) \Rightarrow (SA(X_1), SA(X_2), SA(X_3), \ldots SA(X_t))\]

- This creates vulnerability to attack on manipulating blocks
 - The attacker can change order of blocks, remove/ add in a few

- Slow: PKC is already slow, now is run multiple times

- Signature is long, as long as the message itself.
Hash Functions

- A hash function H maps a message of variable length n bits to a fingerprint of fixed length m bits, with $m < n$.
 - This hash value is also called a digest (of the original message).
 - Since $n > m$, there exist many X which are map to the same digest \Rightarrow collision.

Applications
- Digital signatures
- Message authentication
DS schemes with hash functions

Signature Generator

\[X \cdot D_A(H(X)) \]

Signature Verifier

\[0 \rightarrow \text{Accept} \]
\[1 \rightarrow \text{Reject} \]
Main properties

Given a hash function $H: X \rightarrow Y$

- Long message \rightarrow short, fixed-length hash
- One-way property: given $y \in Y$
 it is computationally infeasible to find a value $x \in X$
 s.t. $H(x) = y$
- Collision resistance (collision-free)
 it is computationally infeasible to find any two distinct values $x', x \in X$
 s.t. $H(x') = H(x)$
 - This property prevent against signature forgery
Collisions

- Avoiding collisions is theoretically impossible
 - Dirichlet principle: n+1 rabbits into n cages \Rightarrow at least 2 rabbits go to the same cage
 - This suggests exhaustive search: try $|Y|+1$ messages then must find a collision $(H:X \rightarrow Y)$

- In practice
 - Choose $|Y|$ large enough so exhaustive search is computational infeasible.
 - $|Y|$ not too large or long signature and slow process
 - However, collision-freeness is still hard
Birthday attack

Can hash values be of 64 bits?

- Look good, initially, since a space of size 2^{64} is too large to do exhaustive search or compute that many hash values.
- However a birthday attack can easily break a DS with a 64-bit hash function.
 - In fact, the attacker only need to create a bunch of 2^{32} messages and then launch the attack with reasonably high probability for success.
How is the attack

- **Goal:** given H, find x, x’ such that H(x)=H(x’)
- **Algorithm:**
 - pick a random set S of q values in X
 - for each x∈S, computes h_x=H(x)
 - if h_x=h_{x’} for some x’≠x then collision found: (x,x’), else fail
- **The average success probability is**
 \[\varepsilon = 1 - \exp\left(\frac{q(q-1)}{2|Y|}\right) \]
 - Suppose Y has size 2^m, choose q \approx 2^{m/2} then \varepsilon is almost 0.5!
Birthday paradox

- Given a group of people, the minimum number of people such that two will share the same birthday with probability at least 50% is only 23 ➔ why “paradox”
- Computing the chance
 - \[1 - (1 - 1/365)(1-2/365)\ldots(1-22/365) = 1-0.493 = 0.507 \]
Common techniques to build hash functions

- **Using SKC**
 - E.g. using SKC in CBC mode

- **Using modulo arithmetic operations**

- **Specific designs**
 - MD4, MD5, SHA

\[
X = X_1 X_2 X_3 \ldots X_n \\
Y_i = E_z (X_i \oplus Y_{i-1}) \\
H(X) = Y_n
\]
MAC: message authentication code

- Hash function is public and the key shared between the sender and the receiver is secret
 - Sender computes mac1 = MAC(M, H, K) and sends it along with the message M
 - Receiver computes mac2 = MAC(M, H, K) and checks if mac1 = mac2? Yes → the message is authentic; no => reject it

- The output of MAC can not be produced without knowing the secret key
 - So, this mechanism provides data integrity and source authentication