Using Propositional Logic

Representing simple facts

It is raining
RAINING

It is sunny
SUNNY

It is windy
WINDY

If it is raining, then it is not sunny
RAINING → ¬SUNNY
Propositional Logic Syntax

• Logical constants: true, false
• Propositional symbols: P, Q, ...
• Logical connectives: \(\neg, \land, \lor, \Rightarrow, \Leftrightarrow \)

• Sentences (formulas):
 – Logical constants
 – Proposition symbols
 – If \(\alpha \) is a sentence, then so are \(\neg \alpha \) and \((\alpha) \)
 – If \(\alpha \) and \(\beta \) are sentences, then so are \(\alpha \land \beta, \alpha \lor \beta, \alpha \Rightarrow \beta, \) and \(\alpha \Leftrightarrow \beta \)
Propositional Logic Semantics

- **Interpretation**: propositional symbol \rightarrow true/false

- The truth value of a sentence is defined by the **truth table**

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Cao Hoang Tru
CSE Faculty - HCMUT

4 April, 2012
Propositional Logic Semantics

- **Satisfiable**: true under an interpretation
- **Valid**: true under all interpretations

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \land \neg P</th>
<th>(P \lor Q) \land \neg Q</th>
<th>((P \lor Q) \land \neg Q) \Rightarrow P</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>

unsatisfiable satisfiable valid
Propositional Logic Semantics

- **Model**: an interpretation under which the sentence is true

\[
P \land Q \quad P \lor Q
\]

\[
P \Rightarrow Q \quad P \Leftrightarrow Q
\]

Cao Hoang Tru
CSE Faculty - HCMUT

6
4 April, 2012
Propositional Logic Semantics

- **Entailment**: \(KB \models \alpha \) iff every model of \(KB \) is a model of \(\alpha \).

 \(\alpha \) is a logical consequence of \(KB \).

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \Rightarrow Q</th>
<th>P \Rightarrow Q, P</th>
<th>{P \Rightarrow Q, P} \models Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>
Propositional Logic Semantics

- **Equivalence**: \(\alpha \equiv \beta \) iff \(\alpha \vdash \beta \) and \(\beta \vdash \alpha \)

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>(P \Rightarrow Q)</th>
<th>(\neg P \lor Q)</th>
<th>(P \Rightarrow Q \equiv \neg P \lor Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td></td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td></td>
</tr>
</tbody>
</table>
Propositional Logic Semantics

• Theorems:
 – $\alpha \models \beta$ iff $\alpha \Rightarrow \beta$ is valid

 $\text{KB} \models \alpha$ can be proved by validity of $\text{KB} \Rightarrow \alpha$

 – $\alpha \models \beta$ iff $\alpha \land \neg \beta$ is unsatisfiable

 $\text{KB} \models \alpha$ can be proved by refutation of $\text{KB} \land \neg \alpha$
Using Propositional Logic

- Theorem proving is **decidable**
- Cannot represent **objects** and **quantification**
Predicate Logic Syntax

- **Constant** symbols: a, b, c, John, ...
 to represent primitive objects

- **Variable** symbols: x, y, z, ...
 to represent unknown objects

- **Predicate** symbols: safe, married, love, ...
 to represent relations

 - \texttt{married(John)}
 - \texttt{love(John, Mary)}
Predicate Logic Syntax

- **Function symbols**: square, father, ...
 to represent simple objects

 \[
 \text{safe(square}(1, 2))
 \]

- **Terms**:
 to represent complex objects
 - Constant symbols
 - If \(f \) is a function symbol, and \(t_1, t_2, ..., t_n \) are terms, then so is \(f(t_1, t_2, ..., t_n) \)

 \[
 \text{love(mother(father}(John)), John)
 \]
Predicate Logic Syntax

- **Logical connectives:** \(\neg, \land, \lor, \Rightarrow, \Leftrightarrow \)

- **Universal quantifier:** \(\forall x: p(x) \)

 \(\forall x: \text{love}(\text{father}(x), \text{mother}(x)) \)

- **Existential quantifier:** \(\exists x: p(x) \equiv \neg \forall x: \neg p(x) \)

 \(\exists x: \neg \text{married}(x) \)
Predicate Logic Syntax

- **Sentences:**
 - Atomic sentences: $p(t_1, t_2, \ldots, t_n)$
 - If α is a sentence, then so are $\neg\alpha$ and (α)
 - If α and β are sentences, then so are $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \Rightarrow \beta$, and $\alpha \Leftrightarrow \beta$
 - If α is a sentence, then so are $\forall \alpha$ and $\exists \alpha$
Using Predicate Logic

- Can represent **objects** and **quantification**
- Theorem proving is **semi-decidable**
Using Predicate Logic

1. Marcus was a man.
2. Marcus was a Pompeian.
3. All Pompeians were Romans.
4. Caesar was a ruler.
5. All Pompeians were either loyal to Caesar or hated him.
6. Every one is loyal to someone.
7. People only try to assassinate rulers they are not loyal to.
8. Marcus tried to assassinate Caesar.
Using Predicate Logic

1. Marcus was a man.
 \[\text{man}(\text{Marcus}) \]
Using Predicate Logic

2. Marcus was a Pompeian.
 \[\text{Pompeian}(\text{Marcus})\]
Using Predicate Logic

3. All Pompeians were Romans.

\(\forall x: \text{Pompeian}(x) \rightarrow \text{Roman}(x) \)
Using Predicate Logic

4. Caesar was a ruler.
 ruler(Caesar)
Using Predicate Logic

5. All Pompeians were either loyal to Caesar or hated him.

inclusive-or

\[\forall x : \text{Roman}(x) \rightarrow \text{loyalto}(x, \text{Caesar}) \lor \text{hate}(x, \text{Caesar}) \]

exclusive-or

\[\forall x : \text{Roman}(x) \rightarrow (\text{loyalto}(x, \text{Caesar}) \land \neg \text{hate}(x, \text{Caesar})) \lor (\neg \text{loyalto}(x, \text{Caesar}) \land \text{hate}(x, \text{Caesar})) \]
Using Predicate Logic

6. Every one is loyal to someone.

\[\forall x: \exists y: \text{loyalto}(x, y) \quad \exists y: \forall x: \text{loyalto}(x, y) \]
Using Predicate Logic

7. People only try to assassinate rulers they are not loyal to.

\[
\forall x: \forall y: \text{person}(x) \land \text{ruler}(y) \land \text{tryassassinate}(x, y) \rightarrow \neg \text{loyalto}(x, y)
\]
Using Predicate Logic

7. People only try to assassinate rulers they are not loyal to.

\[\forall x: \forall y: \text{person}(x) \land \text{ruler}(y) \land \text{tryassassinate}(x, y) \rightarrow \neg \text{loyalto}(x, y) \]
Using Predicate Logic

8. Marcus tried to assassinate Caesar.

\text{tryassassinate}(\text{Marcus, Caesar})
Using Predicate Logic

Was Marcus loyal to Caesar?

\[
\text{man}(\text{Marcus}) \\
\text{ruler}(\text{Caesar}) \\
\text{tryassassinate}(\text{Marcus, Caesar}) \\
\downarrow \\
\forall x: \text{man}(x) \rightarrow \text{person}(x) \\
\neg \text{loyalto}(\text{Marcus, Caesar})
\]
Using Predicate Logic

• Many English sentences are ambiguous.
• There is often a choice of how to represent knowledge.
Reasoning

1. Marcus was a Pompeian.
2. All Pompeians died when the volcano erupted in 79 A.D.
3. It is now 2011 A.D.

Is Marcus alive?
Reasoning

1. Marcus was a Pompeian.
 \[\text{Pompeian}(\text{Marcus})\]

2. All Pompeians died when the volcano erupted in 79 A.D.
 \[\text{erupted}(\text{volcano}, 79) \land \forall x: \text{Pompeian}(x) \rightarrow \text{died}(x, 79)\]

3. It is now 2008 A.D.
 \[\text{now} = 2008\]
Reasoning

1. Marcus was a Pompeian.
 \[\text{Pompeian(Marcus)} \]

2. All Pompeians died when the volcano erupted in 79 A.D.
 \[\text{erupted(volcano, 79)} \land \forall x: \text{Pompeian}(x) \rightarrow \text{died}(x, 79) \]

3. It is now 2008 A.D.
 \[\text{now} = 2008 \]
 \[\forall x: \forall t_1: \forall t_2: \text{died}(x, t_1) \land \text{greater-than}(t_2, t_1) \rightarrow \text{dead}(x, t_2) \]
Reasoning

- **Obvious information** may be necessary for reasoning.

- We may not know in advance which statements to deduce (P or \(\neg P\)).
Reasoning

KB |= \alpha \ (\alpha \ is \ a \ logical \ consequence \ of \ KB)

How to prove it automatically?
Resolution

Resolution

Proof by refutation

\[KB \models \alpha \iff KB \land \neg \alpha \models \text{false (empty clause)} \]
Resolution

Resolution inference rule

$$(\alpha \lor \neg \beta) \land (\gamma \lor \beta) \text{ premise}$$

$$(\alpha \lor \gamma) \text{ conclusion}$$
Resolution in Propositional Logic

1. Convert all the propositions of KB to clause form (S).

\[L_1 \lor L_2 \lor \ldots \lor L_n \]

P or \(\neg P \)
Resolution in Propositional Logic

1. Convert all the propositions of KB to clause form \((S)\).
2. Negate \(\alpha\) and convert it to clause form. Add it to \(S\).
3. Repeat until either a contradiction is found or no progress can be made:
 a. Select two clauses \((\alpha \lor \neg P)\) and \((\gamma \lor P)\).
 b. Add the resolvent \((\alpha \lor \gamma)\) to \(S\).
Resolution in Propositional Logic

Example:

\[\text{KB} = \{P, (P \land Q) \rightarrow R, (S \lor T) \rightarrow Q, T\} \]

\[\alpha = R \]
Resolution in Predicate Logic

Example:

\[\text{KB} = \{ \text{P(a), } \forall x: (\text{P(x) } \land \text{ Q(x)) } \rightarrow \text{ R(x), } \forall y: (\text{S(y) } \lor \text{ T(y)) } \rightarrow \text{ Q(y), T(a)} \} \]
\[\alpha = \text{R(a)} \]
Resolution in Predicate Logic

Unification:

\[\text{UNIFY}(p, q) = \text{unifier } \theta \text{ where } \theta(p) = \theta(q) \]
Resolution in Predicate Logic

Unification:

∀x: knows(John, x) → hates(John, x)
knows(John, Jane)
∀y: knows(y, Leonid)
∀y: knows(y, mother(y))
∀x: knows(x, Elizabeth)
Resolution in Predicate Logic

Unification:

∀x: knows(John, x) → hates(John, x)
knows(John, Jane)
∀y: knows(y, Leonid)
∀y: knows(y, mother(y))
∀x: knows(x, Elizabeth)

UNIFY(knows(John, x), knows(John, Jane)) = {Jane/x}
UNIFY(knows(John, x), knows(y, Leonid)) = {Leonid/x, John/y}
UNIFY(knows(John, x), knows(y, mother(y))) = {John/y, mother(John)/x}
UNIFY(knows(John, x), knows(x, Elizabeth)) = FAIL
Resolution in Predicate Logic

Unification: Standardization

\[
\text{UNIFY}(\text{knows}(\text{John}, x), \text{knows}(y, \text{Elizabeth})) = \{\text{John}/y, \text{Elizabeth}/x\}
\]
Resolution in Predicate Logic

Unification: Occur check

UNIFY(knows(x, x), knows(y, mother(y))) = FAIL

CuuDuongThanCong.com
Resolution in Predicate Logic

Unification: Most general unifier

\[
\text{UNIFY}(\text{knows}(\text{John}, x), \text{knows}(y, z)) = \{\text{John}/y, \text{John}/x, \text{John}/z\} \\
= \{\text{John}/y, \text{Jane}/x, \text{Jane}/z\} \\
= \{\text{John}/y, v/x, v/z\} \\
= \{\text{John}/y, z/x, \text{Jane}/v\} \\
= \{\text{John}/y, z/x\}
\]
Conversion to Clause Form

1. Eliminate →.
 \[P \rightarrow Q \equiv \neg P \lor Q \]

2. Reduce the scope of each \(\neg \) to a single term.
 \[
 \neg(P \lor Q) \equiv \neg P \land \neg Q \\
 \neg(P \land Q) \equiv \neg P \lor \neg Q \\
 \neg \forall x: P \equiv \exists x: \neg P \\
 \neg \exists x: p \equiv \forall x: \neg P \\
 \neg \neg P \equiv P
 \]

3. Standardize variables so that each quantifier binds a unique variable.
 \[
 (\forall x: P(x)) \lor (\exists x: Q(x)) \equiv (\forall x: P(x)) \lor (\exists y: Q(y))
 \]
Conversion to Clause Form

4. Move all quantifiers to the left without changing their relative order.

\[\forall x: (P(x) \lor \exists y: Q(y)) \equiv \forall x: \exists y: (P(x) \lor (Q(y))) \]
\[(\forall x: P(x)) \lor (\exists y: Q(y)): \text{don’t move!} \]

5. Eliminate \(\exists \) (Skolemization).

\[\exists x: P(x) \equiv P(c) \quad \text{Skolem constant} \]
\[\forall x: \exists y P(x, y) \equiv \forall x: P(x, f(x)) \quad \text{Skolem function} \]

6. Drop \(\forall \).

\[\forall x: P(x) \equiv P(x) \]

7. Convert the formula into a conjunction of disjuncts.

\[(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R) \]

8. Create a separate clause corresponding to each conjunct.

9. Standardize apart the variables in the set of obtained clauses.
Conversion to Clause Form

1. Eliminate \rightarrow.
2. Reduce the scope of each \neg to a single term.
3. Standardize variables so that each quantifier binds a unique variable.
4. Move all quantifiers to the left without changing their relative order.
5. Eliminate \exists (Skolemization).
6. Drop \forall.
7. Convert the formula into a conjunction of disjuncts.
8. Create a separate clause corresponding to each conjunct.
9. Standardize apart the variables in the set of obtained clauses.
Resolution in Predicate Logic

1. Convert all the propositions of KB to clause form (S).
2. Negate α and convert it to clause form. Add it to S.
3. Repeat until a contradiction is found:
 a. Select two clauses ($\alpha \lor \neg p(t_1, t_2, \ldots, t_n)$) and ($\gamma \lor p(t'_1, t'_2, \ldots, t'_n)$).
 b. $\theta = \text{mgu}(p(t_1, t_2, \ldots, t_n), p(t'_1, t'_2, \ldots, t'_n))$
 c. Add the resolvent $\theta(\alpha \lor \gamma)$ to S.
Resolution in Predicate Logic

Example:

\[KB = \{ P(a), \forall x: (P(x) \land Q(x)) \rightarrow R(x), \forall y: (S(y) \lor T(y)) \rightarrow Q(y), T(a) \} \]

\[\alpha = R(a) \]
Example

1. Marcus was a man.
2. Marcus was a Pompeian.
3. All Pompeians were Romans.
4. Caesar was a ruler.
5. All Pompeians were either loyal to Caesar or hated him.
6. Every one is loyal to someone.
7. People only try to assassinate rulers they are not loyal to.
8. Marcus tried to assassinate Caesar.
Example

1. Man(Marcus).
2. Pompeian(Marcus).
3. $\forall x: \text{Pompeian}(x) \rightarrow \text{Roman}(x)$.
4. ruler(Caesar).
5. $\forall x: \text{Roman}(x) \rightarrow \text{loyalto}(x, \text{Caesar}) \lor \text{hate}(x, \text{Caesar})$.
6. $\forall x: \exists y: \text{loyalto}(x, y)$.
7. $\forall x: \forall y: \text{person}(x) \land \text{ruler}(y) \land \text{tryassassinate}(x, y) \rightarrow \neg \text{loyalto}(x, y)$.
8. tryassassinate(Marcus, Caesar).
Example

Prove:

$hate(Marcus, Caesar)$
Question Answering

1. When did Marcus die?
2. Whom did Marcus hate?
3. Who tried to assassinate a ruler?
4. What happen in 79 A.D.?
5. Did Marcus hate everyone?
Soundness and Completeness

- **Soundness** of a reasoning algorithm/system R:

 \[
 \text{if } KB \text{ derives } \alpha \text{ using } R, \text{ then } KB \models \alpha
 \]
Soundness and Completeness

- **Completeness** of a reasoning algorithm/system R:

 If $KB \models \alpha$, then KB derives α using R
Soundness and Completeness

Resolution algorithm is **sound** and **complete**
Soundness and Completeness

- In general:
 - **Soundness**: any returned answer is a correct answer.
 - **Completeness**: all correct answers are returned.
Programming in Logic

PROLOG:

• Only Horn sentences are acceptable

\[A \leftarrow B_1, B_2, \ldots, B_m \equiv A \lor \neg B_1 \lor \neg B_2 \lor \ldots \lor \neg B_m \]

A, B_i: atoms
Programming in Logic

PROLOG:

- The occur-check is omitted from the unification: unsound
 test ← P(x, x)
 P(x, f(x))
Programming in Logic

PROLOG:

• Backward chaining with depth-first search: incomplete

\[P(x, y) \leftarrow Q(x, y) \]
\[P(x, x) \]
\[Q(x, y) \leftarrow Q(y, x) \]
Programming in Logic

PROLOG:

• Unsafe cut: incomplete

\[
\begin{align*}
A & \leftarrow B, C \\
B & \leftarrow D, !, E \\
D & \leftarrow
\end{align*}
\]
Programming in Logic

PROLOG:

• Negation as failure: \(\neg P \) if fails to prove \(P \)