Video Processing Fundamentals

Dr. Nguyen Ngoc Thao
Department of Computer Science, FIT, HCMUS
Outline

- Introduction to Video processing
- Video coding

cuu duong than cong . com
Section 8.1

VIDEO PROCESSING
Video signals

- **Video signal** is a sequence of 2-D images captured from the projection of a 3-D scene onto an image plane.
Temporal sampling of video signals

- A video consists of a sequence of images, displayed in rapid succession, to give an illusion of continuous motion.
 - If the time gap between successive frames is too large, the viewer will observe jerky motion.

https://www.youtube.com/watch?v=2r6YpMzNyMk
Why do we care video?

- Visual representations are often the most efficient way to represent information.
 - Most information (85%) are acquired by human vision system
 - Telling stories (movie), sharing ideas (demo), scouting scene (surveillance), communicating effectively (video conferencing).

![Comparison of video vs text](image)
Video processing

- **Video processing** is a particular case of signal processing, which often employs video filters and where the input and output signals are video files or video streams.
- Purpose: improves the apparent definition of video signals

Why do we process video?

- Tasks in video processing involve the manipulation of videos’ characteristics, such as:
 - Deinterlacing
 - Aspect ratio control, digital zoom and pan, frame rate conversion
 - Brightness/contrast/hue/saturation/sharpness/gamma adjustments
 - Color point conversion (601 to 709 or 709 to 601), color space conversion (YPBPR/YCBCR to RGB or RGB to YPBPR/YCBCR)
 - Primary and secondary color calibration (including hue/saturation/luminance controls independently for each)
 - Mosquito noise reduction, block noise reduction
 - Detail enhancement, edge enhancement
 - Motion compensation
Why do we process video?

- They are also generalization of (static) image techniques into the (dynamic) video environment
 - Detail enhancement, denoising, deblurring, restoration,…
 - Visual mosaicking, inpainting
 - Motion tracking, face recognition, segmentation…
Why do we process video?

- Video formation systems are not ideal
 - Videos can be corrupted, resolutions are limited.
- Vast video data are challenging for storage/transmission.
 - To see more will less storage/bandwidth
- Autonomous systems are desirable by making computer to understand videos
Deinterlacing is the process of converting interlaced video, such as common analog television signals or 1080i format HDTV signals, into a non-interlaced form.
Interlaced vs. Progressive scanning

- **Interlaced scanning** uses two fields captured at two different times to create a video frame.
 - One field contains all odd-numbered lines in the image while the other contains all even-numbered lines.
 - E.g., a television scans 60 fields/sec (30 odd and 30 even) → these two sets of 30 fields are combined to create a 30fps full frame.

- **Progressive scanning** is where the lines are drawn in one at a time in sequential order.
 - E.g., the entire single 30fps frame image is painted every 1/60th of a second, allowing for twice the detail to be sent.
Interlaced Scan formats range from 480i lines of horizontal resolution to 1080i lines of horizontal resolution. The lines of horizontal resolution are the number of lines a video image is separated into.
Interlacing scanning

- Interlaced scanning allows for doubling the perceived frame rate of a video display without consuming extra bandwidth, but suffers flicker, lower resolution and quality issues.

- Analog TV and old CRT-based displays were able to display interlaced video correctly due to their complete analogue nature.

- Newer digital displays require the two fields to be combined into a single frame, which leads to various visual defects.
Video deinterlacing

- There are various methods to deinterlace video, each producing different problems or artifacts of its own.
- **Field combination**: the even and odd fields are combined into one frame which is then displayed
- **Field extension**: each field (with only half the lines) is extended to the entire screen to make a frame
- **Motion compensation** and others: a combination of both

The problem has been researched for decades and employs complex processing algorithms, yet consistent results have been very hard to achieve.
Example of video deinterlacing

https://www.youtube.com/watch?v=YczLRshnxQ8
Noise reduction

- Video compression artifacts include cumulative results of compression of the comprising still images.

- **Block boundary discontinuities:** occur at edges during the motion compensated video compression.
 - The current picture is predicted by shifting blocks of pixels from previously decoded frames. If two neighboring blocks use different motion vectors, there is a discontinuity at the edge between blocks.

- **Mosquito noise:** ringing or other edge busyness in successive still images appear in sequence as a shimmering blur of dots around edges
Example of noise reduction

Gaussian Noise
Grainy Image
Clear Image

Block Noise
Mosaic-Like Artifacts
Clear Image

Mosquito Noise
Hazy Edge
Clear Image
Video denoising

- **Video denoising** is the process of removing noise from a video signal.
 - **Chroma noise** is where one see color fluctuations while **luminance noise** is where one see light/dark fluctuations.
 - Generally, the luminance noise looks more like film grain while chroma noise looks more unnatural or digital like.

- **Spatial denoising**: apply image noise reduction to individual frames.

- **Temporal denoising**: reduce noise between frames
 - Motion compensation may be used to avoid ghosting artifacts when blending together pixels from several frames.

- **Spatial-temporal (or 3D) denoising**: a combination of both
Example of video denoising

Denoise OFF

Denoise ON

https://www.youtube.com/watch?v=sGc9qDjU9AQ
Video super-resolution aims for exploiting additionally the information from multiple low resolution images to provide higher resolution images.
Example of video super-resolution

https://www.youtube.com/watch?v=QdK5-gNf4Wg
Video deblurring

- Blurry frames often cause a flickering effect when viewed in real time, degrading the quality of visual perception.
- Camera motion within the capture of each individual frame leads to motion blur.
 - The blurring is often more pronounced after stabilization, due to inconsistencies with the modified stabilization-induced motion path.
- Motion between frames yields inter-frame misalignment that can be exploited for blur removal.
Example of video deblurring

https://www.youtube.com/watch?v=NoqRM1bqgaQ&t=60s
Face capture and reenactment

Face2Face: Real-time Face Capture and Reenactment of RGB Videos (CVPR 2016)
Human pose estimation

Source: https://www.youtube.com/watch?v=YG0lWAgRig

Realtime Multi-Person 2D Human Pose Estimation using Part Affinity Fields (CVPR 2017)
Section 9.2

VIDEO CODING
Video frame rate

- **Frame rate** (fps, in hertz) is the frequency (rate) at which consecutive frames are displayed in an animated display.
 - In practice, most video formats use temporal sampling rates of 24 frames per second and above.
 - E.g., NTSC video has a frame rate of 30 frames/sec.
The **Common Intermediate Format (CIF)** is used to standardize the horizontal and vertical resolutions in pixels of $Y_{Cb}C_r$ sequences in video signals. It is commonly used in video teleconferencing systems.

<table>
<thead>
<tr>
<th>Format</th>
<th>Luminance pixel resolution</th>
<th>Typical Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-QCIF</td>
<td>128×96</td>
<td>Mobile Multimedia</td>
</tr>
<tr>
<td>QCIF</td>
<td>176×144</td>
<td>Video conferencing and Mobile Multimedia</td>
</tr>
<tr>
<td>CIF</td>
<td>352×288</td>
<td>Video conferencing</td>
</tr>
<tr>
<td>4CIF</td>
<td>704×576</td>
<td>SDTV and DVD-Video</td>
</tr>
<tr>
<td>16CIF</td>
<td>1408×1152</td>
<td>HDTV and DVD-Video</td>
</tr>
</tbody>
</table>
Common Intermediate Format

- QCIF
- CIF
- DCIF
- 2CIF
- 4CIF
HD video formats in pixel resolution

- NTSC DVD (720 x 480)
- HDTV 720p (1280 x 720)
- HDTV 1080p (1920 x 1080)
- Digital Cinema - 2K (2048 x 1080)
- Digital Cinema - 4K (4096 x 2160)
- RED Digital Cinema - 2540p (4520 x 2540p)

* HD = high definition

Super Hi-Vision / Ultra High Definition Video (7680 x 4320)
Each pixel is represented by three components: the **luminance component** Y, and the two **chrominance components** C_b and C_r.

RGB to YC_bC_r conversion

$$
\begin{bmatrix}
Y \\
C_b \\
C_r
\end{bmatrix} = \begin{bmatrix}
R \\
G \\
B
\end{bmatrix} \begin{bmatrix}
0.299 & -0.168935 & 0.499813 \\
0.587 & -0.331665 & -0.418531 \\
0.114 & 0.50059 & -0.081282
\end{bmatrix}
$$

Video quality is commonly evaluated by using PSNR in the Y channel, which is referred to as the Y-PSNR (dB).

- Peak signal-to-noise ratio: the maximum possible power of a signal over the power of corrupting noise that affects the fidelity of its representation.
Video frame types

- There are three types of video frames are **I-frame**, **P-frame** and **B-frame**.
Video frame types

- **I-frames** (intra-coded frame) are encoded **without any motion compensation** and are used as a reference for future predicted P and B type frames.
 - I frames require a relatively large number of bits for encoding

- **P-frames** (predictive frame) are encoded **using motion compensated prediction** from a reference frame which can be either I or P frame.
 - P frames are more efficient in terms of number of bits required compared to I frames, but still require more bits than B frames.

- **B-frames** (bidirectional predictive frame) require the lowest number of bits compared to both I and P frames but incur computational complexity.
The **Group of pictures** (GOP) includes successive pictures within a coded video stream, starting with an I frame.

- Encountering a new GOP means that the decoder does not need any previous frames to decode the next ones → fast seeking.

The GOP is often referred by two numbers, M and N.

- M: the distance between two nearest P frames or P and I frame
- N: the distance between two nearest I frames, called **GOP size**

![Diagram of GOP structure](image)

$$M = 3$$
$$N = 9$$
Intra-frame coding

- **Intra-frame coding** removes the spatial redundancy within a frame by using transform (commonly used is DCT).

- **I-coding**
 - **MB (Macro Block)** is encoded as is, without motion compensation.
 - DCT followed by Q (Quantization), zig-zag, run-length, Huffman Coding.
Intra-frame coding

Encoder

input MB → DCT → Q → Entropy coding → E → to bit-stream

Decoder

bit-stream → E⁻¹ → Q⁻¹ → IDCT → to display frame

to motion compensated frame
Inter-frame coding

- **Inter-frame coding** removes the temporal redundancy between successive frames by exploiting the inter-dependencies of video frames.
 - It relies on the fact that adjacent pictures in a video sequence have high temporal correlation

- **Inter (P- and B-coding)**
 - Block-matching – motion estimation
 - Predictive motion residue from best-match block is DCT encoded (similarly to intra mode)
 - Motion vector is differentially encoded
Inter-frame coding

Encoder

Motion compensation

Motion Estimation

Frame Buffer (Delay)
Video sequence and picture

- **Intra Picture** (I-Picture)
 - Encoded without referencing others
 - All MBs are intra coded

- **Inter Picture** (P-Picture, B-Picture)
 - Encoded by referencing other pictures
 - Some MBs are intra coded, and some are inter coded
Coding of I slice

Original block

Transformed block

Quantization matrix

DCT

Bit-stream

Entropy coding

Zig-zag scan
Coding of P-slice

Original current frame

Motion Estimation

Motion Vectors

Residual (Difference Frame)

Reconstructed reference frame

Motion Compensation
Motion estimation in H.261 standard

- Macro-block
 - Luminance: 16×16, four 8×8 blocks
 - Chrominance: two 8x8 blocks
- Motion estimation only performed for luminance component
- Motion vector range $\in [-15, 15]$
Coding of motion vectors

- Integer pixel motion estimation search only
- Motion vectors are differentially and separably encoded
 \[MVD_x = MV_x[n] - MV_x[n - 1] \]
 \[MVD_y = MV_y[n] - MV_y[n - 1] \]
- 11-bit VLC (Variable Length Coding) for MVD
- For example

 - MV = 2 2 3 5 3 1 -1…
 - MVD = 0 1 2 -2 -2 -2…
 - Binary: 1 010 0010 0011 0011 0011…
Inter/Intra switching

- It is based on energy of prediction error
- Intra mode is used for high energy while inter mode is used for low energy.

 - High energy: scene change, occlusions, uncovered areas…
 - Low energy: stationary background, translational motion …

\[
\text{VAR} = \frac{1}{256} \sum_{MB} (c[x, y] - \bar{c})^2
\]

\[
\text{MSE} = \frac{1}{256} \sum_{MB} (c[x, y] - r[x + dx, y + dy])^2
\]
H.263 standard

- Standardization effort started Nov 1993
- Aim:
 - Low bit-rate video communications, less than 64 kbps
 - Target PSTN and mobile network: 10-32 kbps
- Developed as an evolutionary improvement based on experience from H.261, MPEG-1 and MPEG-2 standards.
- Inherited by H.264 (also known as MPEG-4 part 10).
- Main properties
 - H.261 with many MPEG features optimized for low bit rates
 - Performance: 3-4 dB improvements over H.261 at less than 64 kbps; 30% bit rate saving over MPEG-1.
H.263 standard coder

- Original video
 - Motion Compensation
 - Image Transform
 - Lossy Coding

Compressed video
H.263 motion compensation

- Image is divided into 16×16 macroblocks,
- Each macro block is matched against nearby blocks in previous frame (called reference frame),
 - “Nearby” = within 15-pixel horizontal/vertical range
 - Half-pixel accuracy (with bilinear pixel interpolation)
- Best match is used to predict the macro block,
 - The relative displacement, or motion vector, is encoded and transmitted to decoder
- Prediction error for all blocks constitute the **residual**.
Example of motion compensation

T=1 (reference)

T=2 (current)
Residual is divided into 8x8 blocks,

8 × 8 2-D Discrete Cosine Transform (DCT) is applied to each block independently

DCT coefficients describe spatial frequencies in the block

- High frequencies correspond to small features and texture
- Low frequencies correspond to larger features
- Lowest frequency coefficient, called DC, corresponds to the average intensity of the block
Example of DCT

- Original image
- Pixel blocks
- DCT coefficient blocks
- Single coefficient block

Original pixel data:

<table>
<thead>
<tr>
<th>114</th>
<th>108</th>
<th>100</th>
<th>99</th>
<th>109</th>
<th>129</th>
<th>152</th>
<th>166</th>
</tr>
</thead>
<tbody>
<tr>
<td>109</td>
<td>102</td>
<td>95</td>
<td>94</td>
<td>104</td>
<td>124</td>
<td>146</td>
<td>161</td>
</tr>
<tr>
<td>99</td>
<td>93</td>
<td>85</td>
<td>84</td>
<td>94</td>
<td>114</td>
<td>137</td>
<td>151</td>
</tr>
<tr>
<td>86</td>
<td>80</td>
<td>72</td>
<td>71</td>
<td>82</td>
<td>102</td>
<td>124</td>
<td>138</td>
</tr>
<tr>
<td>73</td>
<td>66</td>
<td>58</td>
<td>57</td>
<td>68</td>
<td>88</td>
<td>110</td>
<td>125</td>
</tr>
<tr>
<td>60</td>
<td>53</td>
<td>46</td>
<td>45</td>
<td>55</td>
<td>75</td>
<td>97</td>
<td>112</td>
</tr>
<tr>
<td>50</td>
<td>43</td>
<td>36</td>
<td>35</td>
<td>45</td>
<td>65</td>
<td>88</td>
<td>102</td>
</tr>
<tr>
<td>45</td>
<td>38</td>
<td>31</td>
<td>30</td>
<td>40</td>
<td>60</td>
<td>82</td>
<td>97</td>
</tr>
</tbody>
</table>

DCT coefficient data:

<table>
<thead>
<tr>
<th>700</th>
<th>200</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>-150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>110</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
H.263 Lossy coding

- Transform coefficients are quantized
 - Some less-significant bits are dropped, remaining bits are encoded
- For inter-frames, all coefficients get the same number of bits, except for the DC which gets more.
- For intra-frames, lower-frequency coefficients get more bits
 - To preserve larger features better
- The actual number of bits used depends on the quantization parameter (QP), whose value depends on the bit-allocation policy
- Finally, bits are encoded using entropy (lossless) code, which is traditionally Huffman-style code
Comparison of video coding standards

![Graph showing the comparison of video coding standards](image)

Tempete CIF 30Hz

Quality
Y-PSNR [dB]

Bit-rate [kbit/s]

0 500 1000 1500 2000 2500 3000 3500

H.264/AVC
MPEG-4 Visual
MPEG-2
H.263

CTT310: Digital Image Processing

CuuDuongThanCong.com

https://fb.com/tailieudientucntt
Comparison of video coding standards

![Graph showing comparison of video coding standards](image)

- **Foreman QCIF 10Hz**

 - **Quality Y-PSNR [dB]**
 - **Bit-rate [kbit/s]**

 - **H.264/AVC**
 - **MPEG-4 Visual**
 - **MPEG-2**
 - **H.263**

CTT310: Digital Image Processing
History of video coding standards

- ITU-T Standards:
 - H.261
 - H.263
 - H.263+
 - H.263++

- Joint ITU-T / MPEG Standards:
 - H.262/MPEG-2
 - H.26L

- MPEG Standards:
 - MPEG-1
 - MPEG-4
Video coding stands

ISO (Int. Organization for Standardization)

MPEG-1 (1992)
1.5Mbps, VCD

MPEG-2 (1996)
2-10Mbps, DVD

MPEG-4 (2000)
8-1024Kbps, videophone

Digital cinema (ongoing)

ITU (Int. Telecommunication Union)

H.261 (1990)
p ×64Kbps

H.263
8-64Kbps, videophone

H.263+/++
8-64Kbps, videophone

H.264/AVC

windows media player (Microsoft)

real player (Real-Networks)

Skype Video
References

- EE583 – Digital Image Processing, Dr.