Chương 1
Mặt bậc 2

1. Nhận dạng mặt bậc 2
 (a) $x^2 + 2y^2 + 4z^2 - 2xy + 4yz - 2x - 4z = 0$
 (b) $x^2 + 4y^2 + 4z^2 - 4xy + 4y - 2z = 0$
 (c) $x + \sqrt{4 - y^2 + 2z^2} - 1 = 0$
 (d) $z + \sqrt{y^2 + z^2} + 1 = 0$
 (e) $x^2 + y^2 - z^2 = 2x + 2z$

Ghi chú trong matlab: Lệnh vẽ mặt cầu `sphere(n)`; lệnh vẽ mặt trụ tròn `cylinder(r,n)`; lệnh vẽ mặt nón `cylinder([r1:delta:r2],n)`.

2. Cho vật thể V: $egin{cases} x^2 + y^2 + z^2 \leq 2z \\ z \geq \sqrt{x^2 + y^2} \end{cases}$. Tìm hình chiếu của V xuống Oxy, mặt trên và mặt dưới của V.

3. Cho V giới hạn bởi $z - 4 + \sqrt{x^2 + y^2} = 0, z = 1, z = 2$. Tìm hình chiếu của V xuống Oxy, mặt trên và mặt dưới của V.

4. Cho $V: x^2 + z^2 \leq y \leq 4 - x^2 - y^2$. Tìm hình chiếu của V xuống Oyz, mặt trên và mặt dưới của V.

5. Cho $V: x^2 + y^2 + z^2 \leq 2z, x^2 + y^2 + z^2 \leq 2y$. Tìm hình chiếu của V xuống Oxy, mặt trên và mặt dưới của V.

6. Cho V giới hạn bởi $y = x^2; x = z; x = y; z = 0$. Tìm hình chiếu của V xuống Oxy, mặt trên và mặt dưới của V.

7. Cho V giới hạn bởi $y = x^2; z = 3x; z = 0; y = 5$. Tìm hình chiếu của V xuống Oxy, mặt trên và mặt dưới của V.https://fb.com/tailieudientucntt
Chương 2
Đạo hàm riêng và ứng dụng

1 Đạo hàm riêng và vi phân
Bài 1: Cho $z = e^{uv}, u = x^3y, v = x^2$. Tìm df
Bài 2: Cho $f(x, y) = \sqrt{x^3 + 2y^2}$. Tìm miền xác định của $f'_x(x, y)$.
Bài 3: Cho $f = \arctan \frac{x}{y}$. Tìm $df(1, 1), df^2(1, 1), df(1, 1)$. Tìm $\Delta(x, y) = f''_{xx} + f''_{yy}$.
Bài 4: Cho $f(x, y) = e^x(\cos y + \sin y)$. Tìm $d^2f(0, 0)$.
Bài 5: Cho $z = e^{\arctan \frac{x}{y}}$. Tìm d^2z.
Bài 6: Cho $u = \frac{x + z}{y + z}, z = z(x, y)$ được xác định từ hàm ẩn $ze^x = xe^z + ye^y$.
Bài 7: Tính các đạo hàm riêng cấp 2 của hàm $z = z(x, y)$ được xác định bởi hàm ẩn sau: $e^z = x^2 + y^2 + z^2$.
Bài 8: Cho $f(x, y, z) = x^2 + y^2 + z^2$. Tính đạo hàm theo hướng $u = (1, 1, 1)$. Tìm hướng u mà đạo hàm của f theo hướng này lớn nhất, bé nhất, triệt tiêu.
Bài 9: Cho $f = f(u, v), u = x^2 - y^2, v = e^{xy}$. Tìm df.
Bài 10: Cho $f(u) = u^3 + \sin u, u = 2xy + e^x$. Tìm f''_{xy}.
Bài 11: Tính các đạo hàm cấp 2 tại $(0, 0)$ của hàm số $f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$.
Bài 12: Khai triển taylor của $f(x, y) = x\sqrt{x^2 + y}$ tại $M(0, -1)$.
Bài 13: Khai triển taylor của $f(x, y) = \frac{2x - y}{x - y}$ tại $(1, 2)$ đến cấp 3.
Bài 14: Khai triển taylor của $f(x, y) = (2x + y - 3) \ln \frac{x}{y}$ tại $(1, 1)$ đến cấp 3.
Bài 15: Cho $f(x, y) = x \cos y$. Tính $\frac{\partial^2 f}{\partial x^2 + \partial y^2}(0, 0)$.

2 Cực trị hàm nhiều biến
Câu 1: $z = x^3 + y^3 + 3x^2 - 3xy + 3x - 3y$.
Câu 2: $z = x^3 + 3xy^2 - 15x - 12y$.
Câu 3: $z = x^4 + y^4 - 2(x - y)^2$.
Câu 4: $z = e^{x^2+y^2-6xy-39x+18y}$.
Câu 5: $z = x^4 + 16y^4 + 4x^3 - 4xy^2 - 8xy + 8y$.
Câu 6: $z = x^2 + y^2 + xy - 12x - 3y$.
Câu 7: $z = x^3y + 12x^2 - 8y$.
Câu 8: $z = x^2y^2(6 - x - y)$.

3 Cực trị có điều kiện
Câu 1: \(f(x, y) = 4x + 6y; x^2 + y^2 = 13 \)
Câu 2: \(f(x, y) = x^2y; x^2 + 2y^2 = 6 \)
Câu 3: \(f(x, y) = x^2 + y^2 + xy; x^2 + y^2 = 2 \)
Câu 4: \(f(x, y) = 2x^2 + 12xy + y^2; x^2 + 4y^2 = 25 \)
Câu 5: \(f(x, y) = 6 - 5x - 4y; x^2 - y^2 = 9 \)

Câu 6: \(f(x, y) = x^2 - y^2; x^2 + y^2 = 1 \)
Câu 7: \(f(x, y) = 5 - 3x - 4y; x^2 + y^2 = 25 \)
Câu 8: \(f(x, y) = 1 - 4x - 8y; x^2 - 8y^2 = 8 \)
Câu 9: \(f(x, y) = 2x^2 + 3y^2 + 4z^2; x + y + z = 13 \)

4 Tìm giá trị lớn nhất và nhỏ nhất trên miền \(D \)
Câu 1: \(f(x, y) = 3 + xy - x - 2y, D = \{(x, y) : 0 \leq x \leq 4; 0 \leq y \leq 5\} \)
Câu 2: \(f(x, y) = x^2 + y^2 - xy + x + y, D : x \leq 0; y \leq 0; x + y \geq -3 \)
Câu 3: \(f(x, y) = 1 + 4x - 5y, D \) là miền tam giác với các đỉnh \((0,0); A(2,0); B(0,3)\)
Câu 4: \(f(x, y) = x^2 - 2xy, D : x^2 + y^2 \leq 4; y \geq 0 \)
Câu 5: \(f(x, y) = 4x + 6y - x^2 - y^2, D = \{(x,y) : x^2 + y^2 \leq 25\} \)
Câu 6: \(f(x, y) = (x-6)^2 + (y + 8)^2, D = \{(x,y) : x^2 + y^2 \leq 25\} \)
Câu 7: \(f(x, y) = x^2 - y^2, D = \{(x,y) : x^2 + y^2 \leq 25\} \)
Câu 8: \(f(x, y) = (y^2 - x^2)e^{1-x^2+y^2}, D = \{(x,y) : x^2 + y^2 \leq 4\} \)
Câu 9: \(f(x, y) = 1 + x + 2y, \)
(a) \(D : x \geq 0; y \geq 0; x + y \leq 1 \).
(b) \(D : x \geq 0; y \leq 0; x - y \leq 1 \).
Câu 10: \(f(x, y) = x^3 + y^3 - 3xy, D : 0 \leq x \leq 2; -1 \leq y \leq 2 \)
Câu 11: \(f(x, y) = x^2 - y^2, D : x^2 + y^2 \leq 4 \)
Câu 12: \(f(x, y) = x^2 + y^2 - 12x + 16y, D : x^2 + y^2 \leq 25 \)
Câu 13: \(f(x, y) = x^2y(4 - x - y), D : x \geq 0; y \geq 0; x + y \leq 6 \)
Câu 14: \(f(x, y) = e^{-x^2-y^2}(2x^2 + 3y^2), D : |x| \leq \frac{\pi}{2}; |y| \leq \frac{\pi}{2} \)

5 Tính tích phân kép
Câu 1: \(\iiint_D (x^2 + y) \, dx \, dy, D : x = y^2, x + y = 2 \)
Câu 2: \(\iiint_D y \, e^{xy} \, dx \, dy, D : y = 1, y = 2, x = 0, xy = 1 \)
Câu 3: \(\iiint_D x^2y \, dx \, dy, D : y = x^2, 4y = x^2, y = 4 \)
Câu 4: \(\iiint_D (x + y)^2(x - y) \, dx \, dy, D : |x + y + 2| \leq 1, |x - y| \leq 1 \)
Câu 5: \(\iiint_D |2x - y^2| \, dx \, dy, D : |x - 1| \leq 1, |y| \leq 2 \)
Câu 6: \(\iiint_D (2x - y) \, dx \, dy, D : |x + y| \leq 1, |2x - y| \leq 2 \)
Câu 7: \(\iiint_D (x + y) \, dx \, dy, A = (1,0), B(-1,-1), C(2,3) \)
Câu 8: \(\iiint_D (x^2 + x) \, dx \, dy, D : x = y^2, x + y = 2 \)
Câu 9: \(\iiint_D (x^2 + x) \, dx \, dy, D : x = y^2, x + y = 2 \)
Câu 10: \(\iiint_D |x + y| \, dx \, dy, D : |x| \leq 1, |y| \leq 1 \)

6 Đổi thứ tự lấy tính phân và tính(nếu được)
Câu 1: \(\int_0^{2-y} 0 \int_0^{\sqrt{y}} f(x, y) \, dx \, dy \)
Câu 2: \(\int_0^{2-x^2} 0 \int_0^{4-y} f(x, y) \, dx \, dy \)
Câu 3: \(\int_0^1 0 \int_0^{\sqrt{x}} f(x, y) \, dx \, dy \)
Câu 4: \(\int_0^{1 + \sqrt{1-y^2}} 0 \int_0^{2-y} f(x, y) \, dx \)

7 Đổi sang toa độ cực và tính tích phân
Câu 1: $\int \int_D x^2+y^2 \, dx \, dy, D: 1 \leq x^2 + y^2 \leq 4, x \leq 0.$

Câu 2: $\int \int_D (1+x^2y) \, dx \, dy, D: 1 \leq x^2 + y^2 \leq 4, x \leq -|y|.$

Câu 3: $\int \int_D \frac{dx \, dy}{\sqrt{x^2+y^2}}.$

(a) $D: x^2 + y^2 \leq 2x, x \geq |y|.$
(b) $D: x^2 + y^2 \leq 2x, x \geq 1.$
(c) $D: x^2 + y^2 \leq 2x, x \geq \frac{1}{2}.$

Câu 4: $\int \frac{1}{x} \, dx \, dy.$

(a) $D: 1 \leq x^2 + y^2 \leq 2x.$
(b) $D: x^2 + y^2 \leq 2x, x^2 + y^2 \leq 1.$

Câu 5: $\int \int_D \frac{dx \, dy}{\sqrt{x^2+y^2}}, D: x^2 + y^2 \leq 1, x + y \leq 1.$

Câu 6: $\int \int_D x^2 \, dx \, dy, D: 2x \leq x^2 + y^2 \leq 4x, y \leq x.$

8 Tính tích phân bởi 3

Câu 1: $\int \int \int_V 2 \, dx \, dy \, dz, V: x^2 + y^2 \leq z \leq 4, x, y \geq 0.$

Câu 2: $\int \int \int_V (1+x^2y-z) \, dx \, dy \, dz, V: x = y^2 + z^2, x = 4.$

Câu 3: $\int \int \int_V (x^2 + y^2) \, dx \, dy \, dz, V: z = \sqrt{x^2 + y^2}, z = x^2 + y^2.$

Câu 4: $\int \int \int_V (x^2 + y^2 + z) \, dx \, dy \, dz, V: y = x^2 + z^2, y + x^2 + z^2 = 4.$

Câu 5: $\int \int \int_V (x+y+z)^2 \, dx \, dy \, dz, V: x^2 + y^2 + z^2 \leq 2z, x^2 + y^2 + z^2 \leq 3.$

Câu 6: $\int \int \int_V x^2 + y^2 + z^2 \leq 4, y^2 + z^2 \geq 3x.$

Câu 7: $\int \int \int_V x^2 + y^2 + z^2 \leq 4, y^2 + z^2 \geq 3x.$

Câu 8: $\int \int \int_V y^2 \, dx \, dy \, dz, V: y = x^2, z = z, x = x, y = y, z = 0.$

Câu 9: $\int \int \int_V (x+y+z) \, dx \, dy \, dz, V: z = 0, z = y, x^2 + y^2 = 1(y \geq 0).$

Câu 10: $\int \int \int_V (x+y+z) \, dx \, dy \, dz, V: x^2 + y^2 + z^2 \leq 1, z \leq \sqrt{x^2 + y^2}.$

Câu 11: $\int \int \int_V \frac{dx \, dy \, dz}{\sqrt{x^2+y^2+z^2}}, V: x^2 + y^2 + z^2 \leq 2x, z \leq x.$

9 Tính diện tích mặt trong không gian

Câu 1: Tính diện tích phần mặt $c u x^2 + y^2 + z^2 \leq 2$ nằm phía trên mặt phẳng $z = 1.$

Câu 2: Tính diện tích phần mặt phương $x + y + z = 1$ bị cắt bởi mặt trụ $x = y^2$ và mặt phẳng $x = 1.$

Câu 3: Tính diện tích phần mặt paraboloid elliptic $x = z^2 + y^2$ nằm phía sau mặt phẳng $x = 1.$

Câu 4: Tính diện tích phần mặt trụ $x^2 = 2z$ bị cắt bởi các mặt phẳng $x - 2y = 0, y = 2x, x = 2\sqrt{2}.$
Câu 5: Tính diện tích phần mặt trụ \(x^2 + y^2 = 2y \) nằm trong mặt cầu \(x^2 + y^2 + z^2 = 4 \).

Câu 6: Tính diện tích phần mặt non \(z = \sqrt{x^2 + y^2} \) nằm trong mặt trụ \(x^2 + y^2 = 2x \).

Câu 7: Tính diện tích phần mặt cầu nằm giữa 2 mặt phẳng \(z = \frac{\sqrt{3}}{3} y, z = y \).

Câu 8: Tính diện tích phần xung quanh của vật thể tạo bởi 3 mặt trụ \(x^2 + y^2 = 1, y^2 + z^2 = 1, z^2 + x^2 = 1 \).

10 Tính tích phân đường loại 1

Câu 1: \(\int_C (x + y)dl \), với \(C \) là tam giác \(\Delta OAB : A(2, 2), B(-2, 2) \).

Câu 2: \(\int_C \frac{x - y}{x^2 + y^2 - 2x} dl \), \(C : (x - 1)^2 + y^2 = 4, x \leq 1 \).

Câu 3: \(\int_C xydl, C : \frac{(x - 1)^2}{4} + \frac{y^2}{9} = 1, x \geq 1 \).

Câu 4: \(\int_C (\sqrt{x^2 + y^2})dl \), \(C : \sqrt{x^2 + y^2} = 1 \).

Câu 5: \(\int_C (x - z)dl \), với \(C \) là giao tuyến của 2 mặt \(z = x^2 + y^2, x^2 + y^2 = x + \frac{z}{2} \).

11 Tính tích phân đường loại 2

Câu 1: \(\int_C ydx - (x + y)^2dy \), \(C : y = 2x - x^2 \) nội tội điểm \((2; 0) \) đến điểm \(O(0; 0) \).

Câu 2: \(\int_C (x - y)^2dx + (x + y)^2dy \), \(C : x = t^2, y = t + 2, t = 0 \rightarrow 1 \).

Câu 3: \(\int_C (x^2y + ye^x)dy - (xy^2 + x \cos(x^2))dx \), \(C \) là biên của miền giới hạn bởi \(y = x^2, y = x + 2 \), cùng chiều kim đồng hồ.

Câu 4: \(\int_C (ye^{xy} + 2xy + 3y)dx + (xe^{xy} + x^2 + 4xy)dy \), \(C \) : nửa trái đường tròn đơn vị từ dưới lên trên.

Câu 5: \(\int_C ((1 + xy)e^{xy} + 2xy + 2) dx + (x^2e^{xy} + x^2)dy \), \(C : y = x^2 - 1 \) từ \(A(-2; 3) \) đến \(B(1; 0) \).

Câu 6: \(\int_C \frac{xy - ydx}{x^2 - y^2} \).

(a) \(C \) là chuỗi tuyến không bao quanh \(O(0; 0) \).
(b) \(C \) là đường tiền \(B(O, r) \), ngược chiều kim đồng hồ.
(c) \(C \) là đường tiền \(x^2 + y^2 = 2x + 3 \), theo chiều kim đồng hồ.
(d) \(C \) là đường cong không tự cắt, bao quanh \(O(0; 0) \), nội \(A(1; 0) \) đến \(B(2; 0) \).
(e) \(C \) là đường cong không tự cắt, bao quanh \(O(0; 0) \), nội \(A(-1; 0) \) đến \(B(2; 0) \).

Câu 7: \(\int_C \frac{xdx + ydy}{\sqrt{x^2 + y^2}} \), \(C : y = 4 - x^2 \) nội \(A(-2; 0) \) đến \(B(2; 0) \).

Câu 8: \(\int_C (x^2 + y \cos(xy))dx + \left(\frac{x^3}{3} + xy^2 - x + x \cos(xy) \right) dy \), \(C \) nửa tiền đường tiền \(B(O, r) \) từ trái sang phải.

Câu 9: \(\int_C \left(\frac{x}{\sqrt{x^2 + y^2}} + ye^{xy} \right) dx + \left(\frac{xy}{\sqrt{x^2 + y^2}} + xe^{xy} \right) dy \), \(C \) nửa đổi tiền đường tiền từ phải sang trái.

Câu 10: Cho \(P = x^2 + y^2 + 2x, Q = 2y, h = h(x), I = \int_C h(x)(Pdx + Qdy) \). Hãy tìm hàm \(h(x) \) sao cho \(h(0) = 1 \) và tích phân không phụ thuộc đường di. Với \(h(x) \) vừa tìm được, hãy tính \(I \) với \(C \) là đường cong nội từ \(A(2; 1) \) đến \(B(-1, 3) \).

Câu 11: \(\int_{(1;1)}^{(3,2)} \frac{(x + 2y)dy + ydx}{(x - y)^2} \), với \(C \) là đường cong không cắt đường thẳng \(y = x \).
12 Tính tích phân mặt loại 1

Câu 1: \(\iint_S (x + y + z)\,ds\), S là biên của vật thể giới hạn bởi mp \(x + y + z = 1\) và các trục tọa độ.

Câu 2: \(\iint_S xydz, S\) là hình lập phương \(x = 0, x = 1, y = 0, y = 1, z = 0, z = 1\).

Câu 3: \(\iint_S xydydz + yzdzx + zdxdy, S\) là biên vật thể giới hạn bởi \(x \geq 0, y \geq 0, x^2 + y^2 = 1, z = 0, z = 1\).

Câu 4: \(\iint_S (xy^2 + 2yz + z^2)\,ds, S\) là mặt cầu \(B(O, r)\).

Câu 5: \(\iint_S (x^2 + z^2)\,ds, S\) là phần mặt \(y = x^2 + z^2\) nằm trong mặt \(x^2 + y^2 + z^2 = 2\).

Câu 6: \(\iint_S (xy + z)\,ds, S\) là biên vật thể giới hạn bởi \(z + 1 = x^2 + y^2, z = 2x - 1\).

Câu 7: \(\iint_S (xy + yz + zx)\,ds, S : x = \sqrt{y^2 + z^2}\) nằm phía trong mặt nón \(y^2 + z^2 = 2z\).

13 Tính tích phân mặt loại 2

Câu 1: \(\iint_S ydydz, S\) là mặt bên trái của mặt \(y = x^2 + z^2, 0 \leq y \leq 4\).

Câu 2: \(\iint_S xdydz + ydzx + zdxdy, S\) là mặt dưới của phần mặt \(z = \sqrt{x^2 + y^2}, z \leq 1\).

Câu 3: \(\iint_S xydydz + yzdzx + zdxdy, S\) là mặt trong của vật thể giới hạn bởi \(x \geq 0, y \geq 0, x^2 + y^2 = 1, z = 0, z = 1\).

Câu 4: \(\iint_S ydydz + xdydz - zdydz, S\) là mặt ngoài của mặt cầu đơn vị \(x^2 + y^2 + z^2 = 1, y \leq 0\).

Câu 5: Tính bằng 3 phương pháp
\[\iint_S xdydz + ydzx + zdxdy, S\] là mặt trong của mặt cầu đơn vị \(x^2 + y^2 + z^2 = 1, 0 \leq y \leq 0\).

Câu 6: Dùng công thức G-O, tính \(\iint_S xydydz + yzdzx + zdxdy, S\) là mặt trong của vật thể giới hạn bởi \(x \geq 0, y \geq 0, x^2 + y^2 = 1, z = 0, z = 1\).

Câu 7: \(\iint_S xydydz + (zcosx + y)dzx + y^2dzx, S\) là mặt trong của mặt Paraboloid eliptic \(z = x^2 + y^2(z \leq 1)\).

Câu 8: \(\iint_S x^3dydz + y^3dzx + z^3dzx, S\) là mặt dưới của mặt nón \(z = \sqrt{x^2 + y^2}(z \leq 1)\).

Câu 9: \(\iint_S x^2dydz + yzdzx + zdxdy, S\) là mặt ngoài của mặt cầu \(x^2 + y^2 + z^2 = 25(z \geq 3)\).

Câu 10: \(\iint_S \frac{x^2yz + y^2xz + zdxdy}{\sqrt{x^2 + y^2 + z^2}}, S\) là mặt ngoài của vật thể cho bởi \(1 \leq x^2 + y^2 + z^2 \leq 4\).

Câu 11: \(\iint_S (6x^2 + 2y)dydz + (y + x^2z)dzx + \frac{dxdy}{\sqrt{x^2 + y^2}}, S\) là mặt ngoài của mặt nón \(x^2 + y^2 = 1(0 \leq z \leq 1)\).

Ở tập tích phân mặt

Câu 1: Tìm diện tích phần mặt \(z = x^2 + y^2\) nằm phía dưới mặt phẳng \(z = 1\).

Câu 2: Tìm diện tích phần mặt \(z = \sqrt{R^2 - x^2 - y^2}\) nằm phía trong mặt trục \(x^2 + y^2 = Rx\).

Câu 3: Tìm \(\iint_S x^2dydz + y^2dzx + z^2dzx\) với \(S\) là mặt trên mặt \(x^2 + y^2 + z^2 = 2z\), phía trên.

Câu 4: Tìm thể tích vật thể giới hạn bởi \(y = 2 - x^2, y = 1, z = 0, z = 3x\).
14 Tính tích phân đường loại 2 trong không gian

Câu 1: \(\int_C y \, dx + (x + z) \, dy + x \, dz \), \(C \) là giao tuyến của \(x^2 + y^2 = 1 \) và \(z = y + 1 \), chiều dk nhìn từ hướng dương \(Oz \).

Câu 2: \(\int_C (x + y) \, dx + (2x - z) \, dy + y \, dz \), \(C \) là giao tuyến của \(x^2 + y^2 + z^2 = 4 \) và \(x + y + z = 0 \) ngược chiều dk nhìn từ hướng \(Oz \).

Câu 3: \(\int_C (3x - y^2) \, dx + (3y - z^2) \, dy + (z + x^2) \, dz \), \(C \) là giao tuyến của \(z = x^2 + y^2 \) và \(z = 2 - 2y \) chiều dk theo hướng \(Oz \).

Câu 4: \(\int_C (3x - y^2) \, dx + (2x - z) \, dy + y \, dz \), \(C \) là tam giác \(\Delta ABD : A(2; 0; 0), B(0; 3; 0), D(0; 0; 6) \), ngược chiều dk nhìn từ hướng \(Oz \).

Câu 5: Tính \(\int_C yz \, dx + xz \, dy + xy \, dz \) với \(C \) là giao của \(x^2 + y^2 = 1 \), \(z = y^2 \), lấy ngược dk từ hướng \(Oz \).

15 Xét sự hội tụ của chuỗi số

Câu 1: \(\sum_{n=1}^{\infty} \frac{2 + 3n}{7 - 4n} \)

Câu 2: \(\sum_{n=1}^{\infty} \frac{2 + \sqrt{2n} - 3}{7n^2 - 4n} \)

Câu 3: \(\sum_{n=1}^{\infty} \frac{\ln \frac{3}{n}}{n^3} \)

Câu 4: \(\sum_{n=1}^{\infty} \frac{\sin n + \cos 2n}{2n - 3n^2} \)

Câu 5: \(\sum_{n=1}^{\infty} \frac{(3n + 1)!}{8^n n^2} \)

Câu 6: \(\sum_{n=1}^{\infty} \frac{(2n - 1)!!}{2^{2n} (n - 1)!} \)

Câu 7: \(\sum_{n=1}^{\infty} \frac{(n - 1)^n}{n + 1} \)

Câu 8: \(\sum_{n=1}^{\infty} \frac{(n + 1)^n}{n^2 + 2n} \)

Câu 9: \(\sum_{n=1}^{\infty} \frac{2 + 3n}{7 - 4n} \)

Câu 10: \(\sum_{n=1}^{\infty} \frac{1}{2^n} \left(1 + \frac{1}{n} \right) n^2 \)

Câu 11: \(\sum_{n=1}^{\infty} (-1)^n \frac{2^{n-1} + 1}{2^n + 1} \)

Câu 12: \(\sum_{n=1}^{\infty} (-1)^n + 1 \frac{n + 1}{2n^2 - 5} \)

Câu 13: \(\sum_{n=1}^{\infty} (-1)^n \frac{n + 1}{\sqrt{n} - n} \)

Câu 14: \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 - \sqrt{n}} \)

Câu 15: \(\sum_{n=1}^{\infty} \frac{\sin n}{n} \)