Đề luyện tập số 1.

Câu 1. Tìm khai triển Taylor của $f(x, y) = \frac{2x + y}{x + y}$ tại điểm (2,1) đến cấp 3.

Câu 2. Tìm cực trị của hàm $z = x^2 + y^2 + xy - 12x - 3y$.

Câu 3. Khảo sát sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, với $u_n = \left(2 + \frac{1}{n^2} \right)^n$ và $v_n = \left(1 + \frac{2}{n} \right)^n$.

Câu 4. Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{\infty} (-1)^{n-1} x^{2n}$.

Câu 5. Tính tích phân kép $I = \int_{D} \frac{1}{\sqrt{x^2 + y^2}}\, dx\, dy$, trong đồ D là miền phương giới hạn bởi $2x \leq x^2 + y^2 \leq 6x, y \geq x$.

Câu 6. Tính tích phân $I = \int_{C} (e^{x^2} + xy)\, dx + (y \cos y + x^2)\, dy$ với C là chu vi tam giác ABC, A(1,1), B(2,2), C(4,1), chiều kim đồng hồ.

Câu 7. Tính $I = \iint_{D} (z + x)\, dy + x\, dz$, với C là giao của $x^2 + y^2 = 1$ và $z = y + 1$, chiều kim đồng hồ theo hướng dương quay trục Oz.

Câu 8. Tính tích phân mặt loại một $I = \iint_{S} (x^2 + y^2)\, dS$, trong đồ S là phần mặt nón $z^2 = x^2 + y^2$, nằm giữa hai mặt phẳng $z = 0, z = 1$.

Đề luyện tập số 2.

Câu 1. Cho hàm $f(x, y) = xe^{xy}$. Tính $d^2 f(2,1)$.

Câu 2. Tìm gtln, gtnn của $f(x, y) = (y^2 - x^2)e^{1-x^2+y^2}$ trên miền $D = \{(x, y) | x^2 + y^2 \leq 4\}$.

Câu 3. Khảo sát sự hội tụ của các chuỗi số: a) $\sum_{n=2}^{\infty} \left(\frac{n-1}{n} \right)^{n+2}$ b) $\sum_{n=1}^{\infty} \frac{1.3.5... (2n-1)}{2.4.6... (2n)}$.

Câu 4. Tìm bán kính hội tụ của chuỗi lũy thừa $\sum_{n=1}^{\infty} \frac{(-1)^{n} (x-3)^n}{2n + \ln^3 n}$.

Câu 5. Tính tích phân kép $I = \iint_{D} e^{-x^2-y^2}\, dx\, dy$, trong đồ D là miền phương giới hạn bởi $1 \leq x^2 + y^2 \leq 4, y \geq 0, y \leq x\sqrt{3}$.

Câu 6. Tính tích phân $I = \int_{C} (x + y)\, dx + (x - y)\, dy$, với C là phần đường cong $y = x + \sin x$, từ $A(0,0)$ đến $B(\pi, \pi)$.

Câu 7. Tìm diện tích phần mặt câu $z = \sqrt{R^2 - x^2 - y^2}$ nằm trong hình trục $x^2 + y^2 = R^2$.
Câu 8. Tính tích phân mặt loại hai \(I = \iint_S x^3 dy dz + y^3 dx dz + z^3 dx dy \), với \(S \) là biên vật thể giới hạn bởi \(x^2 + y^2 + z^2 \leq 4, z \geq \sqrt{x^2 + y^2} \), phía trong.

Đề luyện tập số 3.

Câu 1. Cho hàm \(f(x, y) = (2x + y) \ln \frac{x}{y} \). Tính \(d^2 f(1, 1) \)

Câu 2. Tìm cực trị của hàm số \(z = xy + \frac{3}{x} + \frac{9}{y} \) với \(x > 0, y > 0 \)

Câu 3. Khảo sát sự hội tụ của chuỗi số \(\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdots (3n-2)}{(2n-1)!!} \)

Câu 4. Tìm bán kính hội tụ của chuỗi lũy thừa \(\sum_{n=1}^{\infty} \frac{n!(x-4)^n}{n^n} \)

Câu 5. Tính tích phân kép \(I = \iint_D (x + 2) dx dy \), trong đó \(D \) là miền phương giới hạn bởi \(\frac{x^2}{9} + \frac{y^2}{4} \leq 1, y \geq 0 \)

Câu 6. Tính tích phân \(I = \oint_C (2x + y) dx + (3x + 2y) dy \), trong đó \(C \) là biên của miền phương giới hạn bởi \(y = 2 - x^2, y = -x \), chiều kim đồng hồ.

Câu 7. Tìm diện tích phần mặt \(z = \sqrt{x^2 + y^2} \) nằm trong hình câu \(x^2 + y^2 + z^2 = 2z \).

Câu 8. Tính \(I = \iiint_S 2dx dy dz \), với \(S \) là phần mặt trị \(x^2 + y^2 = 4 \) nằm giữa hai mặt phương \(z = 1, z = 4 \).

Đề luyện tập số 4.

Câu 1. Cho hàm \(f(x, y) = 4y^2 + \sin^2(x - y) \). Tính \(d^2 f(0, 0) \)

Câu 2. Tìm cực trị của hàm \(z = x^3 y + 12x^2 - 8y \).

Câu 3. Khảo sát sự hội tụ của chuỗi số \(\sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdots (3n-1)}{1 \cdot 5 \cdot 9 \cdots (4n-3)} \)

Câu 4. Tìm bán kính hội tụ của chuỗi lũy thừa \(\sum_{n=1}^{\infty} \frac{(-1)^n(x+1)^n}{3^n(n+1)\ln(n+1)} \)

Câu 5. Tính tích phân \(\iint_D \sqrt{x^2 + y^2}.\ln(x^2 + y^2) dx dy \) với \(D \) là miền \(1 \leq x^2 + y^2 \leq e^2 \)

Câu 6. Cho \(P(x,y) = y, Q(x,y) = 2x - ye^x \). Tìm hàm \(h(y) \) thỏa mãn điều kiện: \(h(1) = 1 \) và biểu thức \(h(y)P(x,y)dx + h(y)Q(x,y)dy \) là vi phân toàn phần của hàm \(u(x,y) \) nào đó. Với \(h(y) \) vừa tìm, tính tích phân \(\int_L [h(y)P(x,y)dx + h(y)Q(x,y)dy] \) trong đó \(L \) là đường cong có phương trình: \(4x^2 + 9y^2 = 36 \), chiếu ngược kim đồng hồ từ điểm \(A(3,0) \) đến \(B(0,2) \).

Câu 7. Tìm diện tích phần mặt \(z = x^2 + y^2 \) nằm trong hình paraboloid \(z = x^2 + y^2 \).

Câu 8. Tính \(I = \iint_S x^3 dy dz + y^3 dx dz + z^3 dx dy \), với \(S \) là nửa dưới một mặt câu \(x^2 + y^2 + z^2 = 2z \), phía trên.

Đề luyện tập số 5.
Câu 1. Tính $\frac{\partial^2 f}{\partial x \partial y}$, với \[f = f(u) = u^3 + \sin u; \quad u = 2xy + e^z\]

Câu 2. Tìm cực trị có điều kiện: $f(x, y) = 2x^2 + 12xy + y^2$; $x^2 + 4y^2 = 25$

Câu 3. Khảo sát sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{3n+2}{n(n-1)^n}$

Câu 4. Tìm miền hội tụ của chuỗi: $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2^n (x-5)^n}{n+1} \ln(n+1)$

Câu 5. Tính tích phân $\int_D \arctg (\sqrt{x^2 + y^2}) \, dx \, dy$ với D là hình tròn $x^2 + y^2 \leq 3$

Câu 6. Chứng tỏ tích phân $I = \int_C e^{x+y} \left[(1+x+y) \, dx + (1-x-y) \, dy\right]$ không phụ thuộc đường đi.

Tính tích phân I với C là hình ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ từ $A(3,0)$ đến $B(0,2)$, ngược chiều kim đồng hồ.

Câu 7. Tìm thể tích vật thể giới hạn bởi $y = 2 - x^2$, $y = 1$, $z = 0$, $z = 3x$, lấy phần $z \geq 0$.

Câu 8. Tính $I = \int_S \int_D x \, dy \, dz + (2y+3z) \, dx \, dz + z^2 \, dy \, dz$, với S là phần mặt phẳng $x + y + z = 4$ nằm trong hình tròn $x^2 + y^2 = 2y$, phía trên.

Đề luyện tập số 6.

Câu 1. Cho hàm 2 biến $z = z(x, y) = 3e^{x+y}$. Tính $dz(1,1)$ và $\frac{\partial^2 z}{\partial x \partial y}(1,1)$

Câu 2. Khảo sát cực trị hàm số $z = x^3 + y^3 + 3x^2 - 3xy + 3x - 3y + 1$

Câu 3. Khảo sát sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 9 \cdots n^2}{(4n-3)!!}$

Câu 4. Tìm miền hội tụ của chuỗi lấy thừa $\sum_{n=0}^{\infty} (-1)^n \frac{3^{n+1}}{4^{n+2}} (x-1)^n$

Câu 5. Tính tích phân kép $I = \int_D \sqrt{4 - x^2 - y^2} \, dx \, dy$, trong đó D là miền phương giới hạn bởi $x^2 + y^2 = 1$, $y \leq x$.

Câu 6. Tính tích phân $I = \int_C (x^2 y + x - y) \, dx + (y - x - xy^2) \, dy$, với C là nửa bên phải của đường tròn $x^2 + y^2 = 4y$, chiều kim đồng hồ.

Câu 7. Tính tích phân đường loại một $I = \int_C \sqrt{x^2 + y^2} \, dl$, với C là nửa trên đường tròn $x^2 + y^2 = 2y$.

Câu 8. Dùng công thức Stokes, tính $I = \oint_C (x + y) \, dx + (2x - z) \, dy + y \, dz$, với C là giao của $x^2 + y^2 + z^2 = 4$ và $x + y + z = 0$, chiều kim đồng hồ theo hướng đường trục 0z.

Đề luyện tập số 7.

Câu 1. Cho hàm 2 biến $z = z(x, y) = y \ln(x^2 - y^2)$. Tính $dz(\sqrt{2},1)$ và $\frac{\partial^2 z}{\partial x \partial y}(\sqrt{2},1)$
Câu 2. Tìm cực trị có điều kiện: \(f(x, y) = 1 - 4x - 8y; \ x^2 - 8y^2 = 8 \).

Câu 3. Khảo sát sự连续 của chuyển số \(\sum_{n=1}^{\infty} \frac{2^n n!}{n^n} \).

Câu 4. Tìm diện hội tụ của chuyển số \(\sum_{n=0}^{\infty} \frac{(n+2)(x+1)^n}{5^{n+2}} \).

Câu 5. Tính tích phân \(\int_{0}^{1} \frac{dx}{\sqrt{3 + x^2 + y^2}} \) với D là diện phương hữu hạn giới hạn bởi các đường \(x^2 + y^2 = 1 \) (x, y ≥ 0), \(x^2 + y^2 = 33 \) (x, y ≥ 0), y=x, y = x \(\sqrt{3} \).

Câu 6. Cho 2 hàm \(P(x, y) = 2ye^{xy} + e^{\alpha x} \cos y, Q(x, y) = 2xe^{xy} - e^{\alpha x} \sin y \) trong đó \(\alpha \) là hằng số. Tìm \(\alpha \) để biểu thức \(Pdx + Qdy \) là vi phân toàn phần của hàm \(u(x, y) \) nào đó. Với \(\alpha \) vừa tìm được, tính tích phân đường \(\int_{(x, y) - y^3}^{x} \) trong đó \((\gamma) \) là đường trên \(x^2 + y^2 = 2x \) lấy theo chiều đường (ngoặc chiều kim đồng hồ).

Câu 7. Tìm tích phân mặt loại một \(I = \int_{S} x^2 dS \), với S là nửa trên mặt \(x^2 + y^2 + z^2 = 4 \).

Câu 8. Dùng công thức Stokes, tính \(I = \int_{C} (3x - y^2)dx + (3y - z^2)dy + (3z - x^2)dz \), với C là giao của \(z = x^2 + y^2 \) và \(z = 2 - 2y \), chiều kim đồng hồ theo hướng đường trục Oz.

Để luyện tập số 8.

Câu 1. Tìm \(z_x, z_y \) của hàm \(z = z(x, y) \) xác định từ phương trình \(x^3 + y^2 + yz = \ln z \).

Câu 2. Tìm gtln, gttn của \(f(x, y) = x^2 + y^2 + x^2y + 4 \) trên miền \(D = \{(x, y) \mid x \leq 1, y \geq 1\} \).

Câu 3. Khảo sát sự连续 của chuyển số a/ \(\sum_{n=1}^{\infty} \left[\frac{2n}{2n+1} \right]^{n+1} \) b/ \(\sum_{n=1}^{\infty} \frac{1.4.9...n^2}{1.3.5...(2n-1)n!} \).

Câu 4. Tìm diện hội tụ của chuyển số \(\sum_{n=1}^{\infty} \frac{(-1)^n (x - 2)^n}{3^{n+1}} \frac{3}{2n^3 + n^2 + 1} \).

Câu 5. Tính tích phân kép \(\int_{D} \sqrt{9 - x^2 - y^2} \) dx dy với D là diện phương hữu hạn giới hạn bởi nửa đường tròn \(x^2 + y^2 = 9 \), y ≥ 0 và các đường thẳng y=x, y = -x.

Câu 6. Cho 2 hàm \(P(x, y) = (1 + x + y)e^y, Q(x, y) = (1 - x - y)e^{-y} \). Tìm hàm \(h(x) \) để biểu thức \(h(x)P(x, y)dx + h(x)Q(x, y)dy \) là vi phân toàn phần của hàm \(u(x, y) \) nào đó. Với \(h(x) \) vừa tìm, tính tích phân \(\int h(x)P(x, y)dx + h(x)Q(x, y)dy \) trong đó L là nửa đường tròn \(x^2 + y^2 = 9 \) nằm bên phải trực tung, chiều di từ điểm A(0, -3) đến điểm B(0, 3).

Câu 7. Tìm \(I = \int_{V} 2z dxdydz \), với V giới hạn bởi \(x^2 + y^2 + z^2 \leq 2z \) và \(z + \sqrt{x^2 + y^2} = 1 \).

Câu 8. Tìm tích phân mặt \(I = \int_{S} (x + 2y)dydz + (y + 2z)dzdx + (z + 2x)dxdy \), với S là phần mặt paraboloid \(z = x^2 + y^2 \), bij cắt bởi \(z = 2 - 2x \), phía dưới.

Để luyện tập số 9.
Câu 1. Tìm miền xác định và miền giá trị của \(f(x, y) = \begin{cases} \frac{-1}{x^2 + y^2}, & \text{if } (x, y) \neq (0, 0) \\ -3, & \text{if } (x, y) = (0, 0) \end{cases} \)

Câu 2. Tìm cực trị của hàm \(f(x, y) = x^2 - 2xy + 2y^2 - 2x + 2y + 4 \)

Câu 3. Khảo sát sự hô biến của \(\sum_{n=1}^{\infty} (u_n + v_n) \) với \(u_n = \frac{(4n-1)^{n+1}}{4n+1} \) và \(v_n = \frac{2.4.6.../(2n).n^n}{4.7.10.../(3n+1).n!} \)

Câu 4. Tìm miền tô thị của chuỗi lũy thừa \(\sum_{n=0}^{\infty} \frac{(x+3)^n}{4^{n+2} \cdot \sqrt{n^3 + 1}} \)

Câu 5. Tính \(J = \int_D dxdy \) với \(D \) là miền phương giới hàn bờ 2 đường trên \(x^2 + y^2 = 2x \), \(x^2 + y^2 = 6x \) và các đường thẳng \(y = x \), \(y = 0 \).

Câu 6. Tìm hàm \(h(x^2 - y^2) \), \(h(1) = 1 \) để tích phân đường sau đây không phụ thuộc đường di \(I = \int_{AB} h(x^2 - y^2) \left[x(x^2 + y^2)dy - y(x^2 + y^2)dx \right] \) với \(AB \) là cung không cắt đường \(x^2 = y^2 \).

Câu 7. Tính \(I = \iiint_V (x + yz)dxdydz \), với \(V \) giới hạn bởi \(z = x^2 + y^2 \) và \(z + x^2 + y^2 = 2 \).

Câu 8. Tính tích phân mặt \(I = \iint_S 2xdydz + (3y + z) dx dz + (2z + 4y) dy dx \), với \(S \) là phần mặt paraboloid \(x^2 + y^2 + z^2 = 2x \), phần \(z \leq 0 \), phía dưới.

Đề luyện tập số 10.

Câu 1. Tính \(f''_{xy}(0,0) \) của \(f(x, y) = \begin{cases} \frac{1}{x^2 + y^2}, & \text{if } (x, y) \neq (0, 0) \\ 0, & \text{if } (x, y) = (0, 0) \end{cases} \)

Câu 2. Tìm cực trị của hàm \(z = x^4 + y^4 - x^2 - y^2 - 2xy \), \(x \neq 0 \).

Câu 3. Khảo sát sự hô biến của chuỗi số \(\sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1} \right)^{2n} \)

Câu 4. Tìm bán kính hô biến của chuỗi lũy thừa \(\sum_{n=1}^{\infty} \frac{(x-4)^n}{n\sqrt{n+2}} \)

Câu 5. Tính tích phân kép \(I = \iint_D (x+y) dxdy \), trong đó \(D \) là miền phương giới hàn bờ \(x^2 + y^2 \leq 4 \), \(x \geq 0 \)

Câu 6. Tính tích phân \(I = \int_{(2,3)^2} \left[\frac{x}{\sqrt{x^2 + y^2}} - \frac{y}{x^2} \right] dx + \left[\frac{y}{\sqrt{x^2 + y^2}} + \frac{1}{x} \right] dy \) theo đường cong \(C \) không qua gốc O và không cắt trực tung.

Câu 7. \(I = \iiint_V \frac{1}{x^2 + y^2 + z^2} dxdydz \), với \(V \) được giới hạn bởi \(x^2 + y^2 + z^2 \leq 4 \) và \(z \geq \sqrt{x^2 + y^2} \)

Câu 8. Tính tích phân mặt \(I = \iint_S (x+z) dydz + (y+x) dxdz + (z+y) dydx \), với \(S \) là phần mặt paraboloid \(z = x^2 + y^2 \) nằm dưới mặt \(x + z = 2 \), phía trên.
Biên soạn: Tiến sĩ Đặng Văn Vinh
Thời gian làm bài: 90 phút.
Hình thức thi: Tự luận.
Thang điểm: câu 1: 1 điểm, các câu còn lại: 1.5 điểm.

Đề luyện tập số 11.

Câu 1. Vẽ khối Ω giới hạn bởi $x^2 + y^2 + z^2 \leq 2y$, $y \geq \sqrt{x^2 + z^2}$.

Câu 2. Trong mặt phẳng $x + y - 2z = 0$ tìm diện sao cho tổng khoảng cách từ đó điểm hai mặt phẳng $x + 3z - 6 = 0$ và $y + 3z - 2 = 0$ là nhỏ nhất.

Câu 3. Khảo sát sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{3(n-1)!}{1^3 \cdot 2^3 \cdots n^3 \cdot 5^2}$.

Câu 4. Tìm miền hội tụ của chuỗi lũy thừa $\sum_{n=1}^{\infty} \frac{(-5)^n(x + 2)^{2n}}{3^n (2n + 1)\sqrt{n + 2}}$.

Câu 5. Tính tích phân kép $I = \iint_D \sqrt{y - x^2} \, dx \, dy$, trong đó D là miền phẳng giới hạn bởi $-1 \leq x \leq 1, 0 \leq y \leq 2$.

Câu 6. Tính tích phân bộ đôi $I = \iiint_V (y + z) \, dx \, dy \, dz$, trong đó V là vật thể được giới hạn bởi $z = x^2 + y^2, x^2 + y^2 = 4, z = 2 + x^2 + y^2$.

Câu 7. Tính tích phân mặt khối $I = \iiint_S (2x + y) \, dy \, dz$, với S là phần mặt $z = x^2 + y^2$ bị cắt bởi mặt $z = 4$, phía trên theo hướng thực trục Oz.

Đề luyện tập số 12.

Câu 1. Tìm $f_x'(1,1)$ của hàm $f(x, y) = 2 + \sqrt{4 - x^2 - y^2}$ và biểu diễn hình học của đạo hàm riêng này như là hệ số góc của tiếp tuyến.

Câu 2. Tìm gtin, gttn của $f(x, y) = x^3 + y^3 - 3xy$ trên miền $0 \leq x \leq 2, -1 \leq y \leq 2$.

Câu 3. Khảo sát sự hội tụ của các chuỗi số: $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n + 1}}$.

Câu 4. Tìm bán kính hội tụ của chuỗi lũy thừa $\sum_{n=1}^{\infty} \frac{(2n + 1)(x - 3)^n}{\sqrt{3n^3 + n \cdot \ln^3 n}}$.

Câu 5. Tính tích phân kép $I = \iint_D \max \{x, y\} \, dx \, dy$, trong đó D là miền phẳng giới hạn bởi $0 \leq x \leq 4, 0 \leq y \leq 4$.

Câu 6. Tính tích phân bộ đôi $I = \iiint_V x \, dx \, dy \, dz$, trong đó V là vật thể được giới hạn bởi $x + y^2 + z^2 \leq 0, x^2 + y^2 + z^2 \leq 4$.

Câu 7. Tính tích phân mặt khối $I = \iiint_S x^3 \, dy \, dz + y^3 \, dx \, dz + z^3 \, dx \, dy$ với S là mặt phẳng ngoại của vật thể giới hạn bởi $x^2 + z^2 \leq y^2, 0 \leq y \leq 1$.

Đề luyện tập số 13.
Câu 1. Tìm $f'_y(0,1)$ của hàm $f(x, y) = 3 - 2x^2 - y^2$ và biểu diễn hình học của đạo hàm riêng này nhược là hệ số góc của tiếp tuyến.

Câu 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất $z = (x + y)e^y$ trên miền $-2 \leq x + y \leq 1$.

Câu 3. Khảo sát sự hội tụ của chuỗi số $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + (-1)^n}$

Câu 4. Tìm chuỗi Taylor của $f(x) = \frac{2x + 3}{x^2 - 5x + 6}$, tại $x_0 = 1$ và tìm miền hội tụ của chuỗi này.

Câu 5. Tìm tích phân kép $I = \iint_D \sqrt{xy} \, dx \, dy$, trong đô D là diện phương giới hạn bởi $1 \leq x^2 + y^2 \leq 4$.

Câu 6. Tìm thế tích và thể giới hạn bởi $x^2 + y^2 = 2xy, z = x + y, z = 0 \ (x > 0)$.

Câu 7. Tìm tích phân mặt loai một $I = \int_S 2 \, dx \, dy$ với S là phẳng mặt $x + y + z = 2$ nằm trong hình câu $x^2 + y^2 + z^2 = 4$.

Đề luyện tập số 14.

Câu 1. Vẽ khối Ω giới hạn bởi $y \leq 4 - x^2, y \geq 1 - x^2, z \geq 0, z \leq 2x$.

Câu 2. Một cái hộp (hình hộp chữ nhật, không có nắp phía trên) được làm từ 12m^2 bia carton. Tìm thế tích lớn nhất của cái hộp này.

Câu 3. Tìm tổng $S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$.

Câu 4. Tìm chuỗi Maclaurin của $f(x) = \int_0^x \frac{dt}{\sqrt{1 - t^4}}$ và tìm miền hội tụ của chuỗi này.

Câu 5. Tìm tích phân $\int_D \sqrt{y} \, dx \, dy$ với D là miền $\frac{x^2 + y^2}{9} \leq 1, x^2 + y^2 \geq 1$.

Câu 6. Tìm diện tích phần mặt câu $x^2 + y^2 + z^2 = 18$ nằm trong hình nón $x^2 + y^2 = z^2$.

Câu 7. Tìm tích phân mặt loai một $I = \int_S 2 \, dx \, dy$, với S là phẳng mặt $x^2 + y^2 = 4$ nằm giữa hai mặt phẳng $z = 0, z = 3$.

Đề luyện tập số 15.

Câu 1. Cho $f = f(3x + y^2, e^y)$. Tính $\frac{\partial f}{\partial x}, \frac{\partial^2 f}{\partial x \partial y}$.

Câu 2. Tìm điểm M trên hình nón $z^2 = x^2 + y^2$, sao cho MA là nhô nhất, với A(4,2,0).

Câu 3. Tìm tổng $\sum_{n=1}^{\infty} \frac{2n + 3}{5^n}$

Câu 4. Tìm chuỗi Maclaurin của hàm $f(x) = \arctan \frac{x + 3}{x - 3}$ và tìm bán kính hội tụ của chuỗi này.

Câu 5. Tìm tích phân $\int_D \max \{ \sin x, \sin y \} \, dx \, dy$ với D là miền $0 \leq x \leq \pi, 0 \leq y \leq \pi$.

Câu 6. Tìm tích phân đường $I = \oint_C (2y + z^2) \, dx + (2z + x^2) \, dy + (2x + y^2) \, dz$, với C là giao của mặt phẳng $x + y + z = 1$ và mặt câu $x^2 + y^2 + z^2 = 4$ ngược chiều kim đồng hồ theo hướng trục Oz.
Câu 7. Tính tích phân mặt loai hai
\[I = \iint_S z \, dx \, dy \] với S là nửa mặt cầu \(x^2 + y^2 + z^2 = 9 \), phần \(y \geq 0 \), phía ngoài (phía trên theo hướng trực Oy).

Đề luyện tập số 16.

Câu 1. Cho \(f = f(u, v) = \arctan \frac{u}{v} \), \(u = u(x, y) = 2x^3 + y^2 \), \(v = v(x, y) = x + 2y \). Tính \(\frac{\partial^2 f}{\partial x \, \partial y} \).

Câu 2. Cho một hình hợp chữ nhật ogróc phần tám thứ nhất trong hệ trực Oxyz, có 3 mặt nằm trên 3 mặt phẳng tọa độ và một đỉnh nằm trên mặt phẳng \(x + 2y + 3z = 6 \). Tìm thể tích loài hồng.

Câu 3. Tính tổng \(\sum_{n=1}^{\infty} \frac{(-2)^n}{n(n+2)} \cdot 7^{n+1} \).

Câu 4. Tìm chuỗi lũy thừa của hàm \(f(x) = \ln\left(x + \sqrt{1 + x^2}\right) \) và tìm bán kính hội tụ của chuỗi này.

Câu 5. Tính tích phân kép \(I = \iint_D \left(\frac{x^2}{16} + \frac{y^2}{9} \right) \, dx \, dy \) trong độ D là miền phẳng giới hạn bởi \(x = 0 \), \(y = 0 \), \(x = 4 \sin t \), \(y = 3 \cos t \), \(t \in [0, \pi/2] \).

Câu 6. Tính tích phân đường \(I = \int_C 3z \, dx + 2xy \, dy + y^2 \, dz \), với C là giao của mặt phẳng \(x + z = 2 \) và mặt cầu \(x^2 + y^2 = 4 \) theo chiều kim đồng hồ theo hướng trực Oz.

Câu 7. Tính tích phân mặt loai hai \(I = \iint_S x^3 \, dy \, dz + y^3 \, dx \, dz \), với S là mặt ngoài của nửa trên ellipsoid \(\frac{x^2}{16} + \frac{y^2}{9} + \frac{z^2}{9} = 1 \), \(z \geq 0 \).

Đề luyện tập số 17.

Câu 1. Cho \(f(x, y) = y + \ln\left(3 + \sqrt{2}x^2 y\right) \). Tìm \(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0) \).

Câu 2. Tìm cực trị có điều kiện: \(f(x, y) = e^{xy} \); \(x^3 + y^3 = 16 \).

Câu 3. Tính tổng \(\sum_{n=1}^{\infty} \frac{(n-1)}{2 \cdot 4 \cdot 6 \cdots (2n)} \).

Câu 4. Sử dụng khai triển Maclaurin của hàm dưới đầu tích phân thành chuỗi, tìm \(\int_{0}^{\infty} \frac{x \, dx}{e^x + 1} \).

Câu 5. Tính tích phân \(\int_{0}^{\infty} \ln (x^2 + y^2 + 2) \, dx \) với D \(0 \leq x \leq 3, 0 \leq y \leq 3 \).

Câu 6. Tính tích phân đường \(I = \int_C \left(y^2 + z \right) \, dx + \left(z^2 + x \right) \, dy + \left(x^2 + y \right) \, dz \), với C là giao của mặt nón \(\sqrt{y^2 + z^2} = x \) và mặt cầu \(x^2 + y^2 + z^2 = 4 \) ngược chiều kim đồng hồ theo hướng trực Ox.

Câu 7. Tính tích phân mặt loai hai \(I = \iint_S x^3 \, dy \, dz + y^3 \, dx \, dz \), với S là mặt trong của vật thể giới hạn bởi \(1 \leq x^2 + y^2 + z^2 \leq 4 \), \(y \geq \sqrt{x^2 + z^2} \).

Đề luyện tập số 18.

Câu 1. Cho \(f(x, y) = \begin{cases} \frac{xy^2 - x^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases} \). Tìm \(\frac{\partial^2 f}{\partial x^2}(0,0), \frac{\partial^2 f}{\partial y^2}(0,0), \frac{\partial^2 f}{\partial y \partial x}(0,0), \frac{\partial^2 f}{\partial x \partial y}(0,0) \).

Câu 2. Tìm cực trị của hàm \(f(x, y) = 4x + 6y \) với điều kiện \(x^2 + y^2 = 13 \).

CuaDuongThanCong.com https://fb.com/tailieudientu
Câu 3. Tính tổng \(S = \sum_{n=1}^{\infty} \frac{(-2)^n}{3^n \cdot 1 \cdot 3 \cdot 5 \ldots (2n+1)} \)

Câu 4. Sử dụng khai triển Maclaurint của hàm tự nhiên \(e^x \), tìm \(\int_0^1 \frac{1}{1-x} \) dx

Câu 5. Tìm diện tích miền phẳng giới hạn \(x^2 + 3y^2 \leq 1, y \geq 0, y \geq x \).

Câu 6. Tính tích phân \(I = \int_C (x^3 + y e^{xy}) \) dx + \((y^2 + xe^{xy}) \) dy, trong đó \(C \) là phần elip \(\frac{x^2}{16} + \frac{y^2}{9} = 1 \) từ điểm \(A(4,0) \) đến \(B(0,-3) \) theo chiều kim đồng hồ.

Câu 7. Tính tích phân mặt loai hai \(I = \iint_S (x-1) dydz + 3ydzdx + 5zdxdy \), với \(S \) là mặt ngoài của nửa duỗi mất cấu \(x^2 + y^2 + z^2 = 2x, z \leq 0 \).

Đề luyện tập số 19.

Câu 1. Vẽ khối \(\Omega \) giới hạn bởi \(z = 4 + x^2, x^2 + y^2 = 2y, x + y + z = 2 \).

Câu 2. Tìm cực trị của hàm \(f(x, y, z) = 2x + 6y + 10z \) với điều kiện \(x^2 + y^2 + z^2 = 35 \).

Câu 3. Khảo sát sự hội tụ của chuỗi \(\sum_{n=2}^{\infty} \frac{1}{n + (-1)^n \sqrt{n}} \).

Câu 4. Tìm chuỗi Maclaurint của \(f(x) = \int_0^x \frac{\ln(1+3t)}{t} dt \) và tìm bán kính hội tụ của chuỗi này.

Câu 5. Tìm diện tích miền phẳng giới hạn \(2x \leq x^2 + y^2 \leq 6x, y \leq x \sqrt{3}, y + x \geq 0 \).

Câu 6. Tính tích phân đường \(I = \int_C y^2 dl \), \(C \) là cung Cycloid \(x = a(t - \sin t), y = a(1- \cos t), 0 \leq t \leq 2\pi \).

Câu 7. Tìm tích phân mặt loai hai \(I = \iint_S z^2 dx dy \), \(S \) là mặt trong của nửa mặt cấu \((x-1)^2 + (y-2)^2 + z^2 = 4, z \geq 0 \).

Đề luyện tập số 20.

Câu 1. Tìm vi phân cấp hai của hàm \(z = z(x,y) \) là hàm ẩn xác định từ phương trình \(x + y + z = e^z \).

Câu 2. Tìm cực trị của hàm \(f(x, y, z) = x + 2y + 3z \) với hai điều kiện \(x - y + z = 1 \) và \(x^2 + y^2 = 1 \).

Câu 3. Tính tổng \(\sum_{n=1}^{\infty} \frac{2n-1}{n^2 (n+1)^2} \).

Câu 4. Tìm bán kính hội tụ của chuỗi lũy thừa \(\sum_{n=1}^{\infty} (-1)^n-1 \frac{(x+2)^{2n}}{n+\sqrt{n+1}} \).

Câu 5. Tìm tích phân kép \(I = \iint_D (x-y) dx \) dy, trong đó \(D \) là miền phẳng giới hạn bởi đường astroid \(x = a \cos^3 t, y = a \sin^3 t, 0 \leq t \leq \pi / 2 \), và các trục toa độ.

Câu 6. Tìm tích phân đường loai mười \(I = \int_C (x+y) dl \), \(C \) là cung bến phái của đường Lemniscate có phương trình trong toa độ \(r^2 = a^2 \cos 2\phi, a > 0 \).

Câu 7. Tìm tích phân mặt loai hai \(I = \iint_S y^2 dz + xzdz + yxdx dy \), với \(S \) là biên của vạt thể giới hạn bởi \(x + y + z \leq 1, x \geq 0, y \geq 0, z \geq 0 \), định hướng phía trong.