12 Binary Search Trees

The search tree data structure supports many dynamic-set operations, including \texttt{SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, INSERT, and DELETE}. Thus, we can use a search tree both as a dictionary and as a priority queue.

Basic operations on a binary search tree take time proportional to the height of the tree. For a complete binary tree with \(n \) nodes, such operations run in \(\Theta(\lg n) \) worst-case time. If the tree is a linear chain of \(n \) nodes, however, the same operations take \(\Theta(n) \) worst-case time. We shall see in Section 12.4 that the expected height of a randomly built binary search tree is \(O(\lg n) \), so that basic dynamic-set operations on such a tree take \(\Theta(\lg n) \) time on average.

In practice, we can’t always guarantee that binary search trees are built randomly, but we can design variations of binary search trees with good guaranteed worst-case performance on basic operations. Chapter 13 presents one such variation, red-black trees, which have height \(O(\lg n) \). Chapter 18 introduces B-trees, which are particularly good for maintaining databases on secondary (disk) storage.

After presenting the basic properties of binary search trees, the following sections show how to walk a binary search tree to print its values in sorted order, how to search for a value in a binary search tree, how to find the minimum or maximum element, how to find the predecessor or successor of an element, and how to insert into or delete from a binary search tree. The basic mathematical properties of trees appear in Appendix B.

12.1 What is a binary search tree?

A binary search tree is organized, as the name suggests, in a binary tree, as shown in Figure 12.1. We can represent such a tree by a linked data structure in which each node is an object. In addition to a \texttt{key} and satellite data, each node contains attributes \texttt{left, right, and p} that point to the nodes corresponding to its left child,
12.1 What is a binary search tree?

![Figure 12.1](image)

Figure 12.1 Binary search trees. For any node x, the keys in the left subtree of x are at most $x.key$, and the keys in the right subtree of x are at least $x.key$. Different binary search trees can represent the same set of values. The worst case running time for most search tree operations is proportional to the height of the tree. (a) A binary search tree on 6 nodes with height 2. (b) A less efficient binary search tree with height 4 that contains the same keys.

its right child, and its parent, respectively. If a child or the parent is missing, the appropriate attribute contains the value NIL. The root node is the only node in the tree whose parent is NIL.

The keys in a binary search tree are always stored in such a way as to satisfy the binary-search-tree property:

Let x be a node in a binary search tree. If y is a node in the left subtree of x, then $y.key \leq x.key$. If y is a node in the right subtree of x, then $y.key \geq x.key$.

Thus, in Figure 12.1(a), the key of the root is 6, the keys 2, 5, and 5 in its left subtree are no larger than 6, and the keys 7 and 8 in its right subtree are no smaller than 6. The same property holds for every node in the tree. For example, the key 5 in the root’s left child is no smaller than the key 2 in that node’s left subtree and no larger than the key 5 in the right subtree.

The binary-search-tree property allows us to print out all the keys in a binary search tree in sorted order by a simple recursive algorithm, called an inorder tree walk. This algorithm is so named because it prints the key of the root of a subtree between printing the values in its left subtree and printing those in its right subtree. (Similarly, a preorder tree walk prints the root before the values in either subtree, and a postorder tree walk prints the root after the values in its subtrees.) To use the following procedure to print all the elements in a binary search tree T, we call `INORDER-TREE-WALK($T.root$)`.
INORDER-TREE-WALK \(x \)
1 \textbf{if} \(x \neq \text{NIL} \)
2 \textbf{INORDER-TREE-WALK} \(x \).left
3 print \(x.key \)
4 \textbf{INORDER-TREE-WALK} \(x \).right

As an example, the inorder tree walk prints the keys in each of the two binary search trees from Figure 12.1 in the order 2, 5, 5, 6, 7, 8. The correctness of the algorithm follows by induction directly from the binary-search-tree property.

It takes \(\Theta(n) \) time to walk an \(n \)-node binary search tree, since after the initial call, the procedure calls itself recursively exactly twice for each node in the tree—one for its left child and once for its right child. The following theorem gives a formal proof that it takes linear time to perform an inorder tree walk.

Theorem 12.1
If \(x \) is the root of an \(n \)-node subtree, then the call \textbf{INORDER-TREE-WALK} \(x \) takes \(\Theta(n) \) time.

Proof Let \(T(n) \) denote the time taken by \textbf{INORDER-TREE-WALK} when it is called on the root of an \(n \)-node subtree. Since \textbf{INORDER-TREE-WALK} visits all \(n \) nodes of the subtree, we have \(T(n) = \Omega(n) \). It remains to show that \(T(n) = O(n) \).

Since \textbf{INORDER-TREE-WALK} takes a small, constant amount of time on an empty subtree (for the test \(x \neq \text{NIL} \)), we have \(T(0) = c \) for some constant \(c > 0 \).

For \(n > 0 \), suppose that \textbf{INORDER-TREE-WALK} is called on a node \(x \) whose left subtree has \(k \) nodes and whose right subtree has \(n - k - 1 \) nodes. The time to perform \textbf{INORDER-TREE-WALK} \(x \) is bounded by \(T(n) \leq T(k) + T(n-k-1) + d \) for some constant \(d > 0 \) that reflects an upper bound on the time to execute the body of \textbf{INORDER-TREE-WALK} \(x \), exclusive of the time spent in recursive calls.

We use the substitution method to show that \(T(n) = O(n) \) by proving that \(T(n) \leq (c + d)n + c \). For \(n = 0 \), we have \((c + d) \cdot 0 + c = c = T(0) \). For \(n > 0 \), we have
\[
T(n) \leq T(k) + T(n-k-1) + d
= ((c + d)k + c) + ((c + d)(n-k-1) + c) + d
= (c + d)n + c - (c + d) + c + d
= (c + d)n + c ,
\]
which completes the proof. \(\blacksquare \)
12.2 Querying a binary search tree

We often need to search for a key stored in a binary search tree. Besides the `SEARCH` operation, binary search trees can support such queries as `MINIMUM`, `MAXIMUM`, `SUCCESSOR`, and `PREDECESSOR`. In this section, we shall examine these operations and show how to support each one in time $O(h)$ on any binary search tree of height h.

Searching

We use the following procedure to search for a node with a given key in a binary search tree. Given a pointer to the root of the tree and a key k, `TREE-SEARCH` returns a pointer to a node with key k if one exists; otherwise, it returns `NIL`.

12.2 Querying a binary search tree

Exercises

12.1-1
For the set of \{1, 4, 5, 10, 16, 17, 21\} of keys, draw binary search trees of heights 2, 3, 4, 5, and 6.

12.1-2
What is the difference between the binary-search-tree property and the min-heap property (see page 153)? Can the min-heap property be used to print out the keys of an n-node tree in sorted order in $O(n)$ time? Show how, or explain why not.

12.1-3
Give a nonrecursive algorithm that performs an inorder tree walk. \textit{(Hint:} An easy solution uses a stack as an auxiliary data structure. A more complicated, but elegant, solution uses no stack but assumes that we can test two pointers for equality.)

12.1-4
Give recursive algorithms that perform preorder and postorder tree walks in $\Theta(n)$ time on a tree of n nodes.

12.1-5
Argue that since sorting n elements takes $\Omega(n \log n)$ time in the worst case in the comparison model, any comparison-based algorithm for constructing a binary search tree from an arbitrary list of n elements takes $\Omega(n \log n)$ time in the worst case.
Figure 12.2 Queries on a binary search tree. To search for the key 13 in the tree, we follow the path 15 → 6 → 7 → 13 from the root. The minimum key in the tree is 2, which is found by following left pointers from the root. The maximum key 20 is found by following right pointers from the root. The successor of the node with key 15 is the node with key 17, since it is the minimum key in the right subtree of 15. The node with key 13 has no right subtree, and thus its successor is its lowest ancestor whose left child is also an ancestor. In this case, the node with key 15 is its successor.

TREE-SEARCH(x, k)
1 if x == NIL or k == x.key
2 return x
3 if k < x.key
4 return TREE-SEARCH(x.left, k)
5 else return TREE-SEARCH(x.right, k)

The procedure begins its search at the root and traces a simple path downward in the tree, as shown in Figure 12.2. For each node x it encounters, it compares the key k with x.key. If the two keys are equal, the search terminates. If k is smaller than x.key, the search continues in the left subtree of x, since the binary-search-tree property implies that k could not be stored in the right subtree. Symmetrically, if k is larger than x.key, the search continues in the right subtree. The nodes encountered during the recursion form a simple path downward from the root of the tree, and thus the running time of TREE-SEARCH is $O(h)$, where h is the height of the tree.

We can rewrite this procedure in an iterative fashion by “unrolling” the recursion into a while loop. On most computers, the iterative version is more efficient.
12.2 Querying a binary search tree

ITERATIVE-TREE-SEARCH \((x, k)\)

1. **while** \(x \neq \text{NIL} \) and \(k \neq x\.key\)
2. **if** \(k < x\.key\)
3. \(x = x\.left\)
4. **else** \(x = x\.right\)
5. **return** \(x\)

Minimum and maximum

We can always find an element in a binary search tree whose key is a minimum by following left child pointers from the root until we encounter a NIL, as shown in Figure 12.2. The following procedure returns a pointer to the minimum element in the subtree rooted at a given node \(x\), which we assume to be non-NIL:

TREE-MINIMUM \((x)\)

1. **while** \(x\.left \neq \text{NIL}\)
2. \(x = x\.left\)
3. **return** \(x\)

The binary-search-tree property guarantees that **TREE-MINIMUM** is correct. If a node \(x\) has no left subtree, then since every key in the right subtree of \(x\) is at least as large as \(x\.key\), the minimum key in the subtree rooted at \(x\) is \(x\.key\). If node \(x\) has a left subtree, then since no key in the right subtree is smaller than \(x\.key\) and every key in the left subtree is not larger than \(x\.key\), the minimum key in the subtree rooted at \(x\) resides in the subtree rooted at \(x\.left\).

The pseudocode for **TREE-MAXIMUM** is symmetric:

TREE-MAXIMUM \((x)\)

1. **while** \(x\.right \neq \text{NIL}\)
2. \(x = x\.right\)
3. **return** \(x\)

Both of these procedures run in \(O(h)\) time on a tree of height \(h\) since, as in **TREE-SEARCH**, the sequence of nodes encountered forms a simple path downward from the root.

Successor and predecessor

Given a node in a binary search tree, sometimes we need to find its successor in the sorted order determined by an inorder tree walk. If all keys are distinct, the
successor of a node x is the node with the smallest key greater than $x.key$. The structure of a binary search tree allows us to determine the successor of a node without ever comparing keys. The following procedure returns the successor of a node x in a binary search tree if it exists, and NIL if x has the largest key in the tree:

TREE-SUCCESSOR(x)

1. if $x.right \neq \text{NIL}$
2. return **TREE-MINIMUM**($x.right$)
3. $y = x.p$
4. while $y \neq \text{NIL}$ and $x == y.right$
5. $x = y$
6. $y = y.p$
7. return y

We break the code for **TREE-SUCCESSOR** into two cases. If the right subtree of node x is nonempty, then the successor of x is just the leftmost node in x’s right subtree, which we find in line 2 by calling **TREE-MINIMUM**($x.right$). For example, the successor of the node with key 15 in Figure 12.2 is the node with key 17.

On the other hand, as Exercise 12.2-6 asks you to show, if the right subtree of node x is empty and x has a successor y, then y is the lowest ancestor of x whose left child is also an ancestor of x. In Figure 12.2, the successor of the node with key 13 is the node with key 15. To find y, we simply go up the tree from x until we encounter a node that is the left child of its parent; lines 3–7 of **TREE-SUCCESSOR** handle this case.

The running time of **TREE-SUCCESSOR** on a tree of height h is $O(h)$, since we either follow a simple path up the tree or follow a simple path down the tree. The procedure **TREE-PREDECESSOR**, which is symmetric to **TREE-SUCCESSOR**, also runs in time $O(h)$.

Even if keys are not distinct, we define the successor and predecessor of any node x as the node returned by calls made to **TREE-SUCCESSOR**(x) and **TREE-PREDECESSOR**(x), respectively.

In summary, we have proved the following theorem.

Theorem 12.2
We can implement the dynamic-set operations **SEARCH**, **MINIMUM**, **MAXIMUM**, **SUCCESSOR**, and **PREDECESSOR** so that each one runs in $O(h)$ time on a binary search tree of height h.

[\(\blacksquare\)]
Exercises

12.2-1
Suppose that we have numbers between 1 and 1000 in a binary search tree, and we want to search for the number 363. Which of the following sequences could not be the sequence of nodes examined?

b. 924, 220, 911, 244, 898, 258, 362, 363.

d. 2, 399, 387, 219, 266, 382, 381, 278, 363.

e. 935, 278, 347, 621, 299, 392, 358, 363.

12.2-2
Write recursive versions of TREE-MINIMUM and TREE-MAXIMUM.

12.2-3
Write the TREE-PREDECESSOR procedure.

12.2-4
Professor Bunyan thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key \(k \) in a binary search tree ends up in a leaf. Consider three sets: \(A \), the keys to the left of the search path; \(B \), the keys on the search path; and \(C \), the keys to the right of the search path. Professor Bunyan claims that any three keys \(a \in A, b \in B, \text{ and } c \in C \) must satisfy \(a \leq b \leq c \). Give a smallest possible counterexample to the professor’s claim.

12.2-5
Show that if a node in a binary search tree has two children, then its successor has no left child and its predecessor has no right child.

12.2-6
Consider a binary search tree \(T \) whose keys are distinct. Show that if the right subtree of a node \(x \) in \(T \) is empty and \(x \) has a successor \(y \), then \(y \) is the lowest ancestor of \(x \) whose left child is also an ancestor of \(x \). (Recall that every node is its own ancestor.)

12.2-7
An alternative method of performing an inorder tree walk of an \(n \)-node binary search tree finds the minimum element in the tree by calling TREE-MINIMUM and then making \(n - 1 \) calls to TREE-SUCCESSOR. Prove that this algorithm runs in \(\Theta(n) \) time.
12.2-8
Prove that no matter what node we start at in a height-\(h \) binary search tree, \(k \) successive calls to TREE-SUCCESSOR take \(O(k + h) \) time.

12.2-9
Let \(T \) be a binary search tree whose keys are distinct, let \(x \) be a leaf node, and let \(y \) be its parent. Show that \(y.key \) is either the smallest key in \(T \) larger than \(x.key \) or the largest key in \(T \) smaller than \(x.key \).

12.3 Insertion and deletion

The operations of insertion and deletion cause the dynamic set represented by a binary search tree to change. The data structure must be modified to reflect this change, but in such a way that the binary-search-tree property continues to hold. As we shall see, modifying the tree to insert a new element is relatively straightforward, but handling deletion is somewhat more intricate.

Insertion

To insert a new value \(v \) into a binary search tree \(T \), we use the procedure TREE-INSERT. The procedure takes a node \(z \) for which \(z.key = v \), \(z.left = \text{NIL} \), and \(z.right = \text{NIL} \). It modifies \(T \) and some of the attributes of \(z \) in such a way that it inserts \(z \) into an appropriate position in the tree.

TREE-INSERT \((T, z)\)

```plaintext
1 y = NIL
2 x = T.root
3 while x ≠ NIL
4 y = x
5 if z.key < x.key
6    x = x.left
7 else x = x.right
8 z.p = y
9 if y == NIL
10   T.root = z         // tree T was empty
11 elseif z.key < y.key
12    y.left = z
13 else y.right = z
```
Figure 12.3 Inserting an item with key 13 into a binary search tree. Lightly shaded nodes indicate the simple path from the root down to the position where the item is inserted. The dashed line indicates the link in the tree that is added to insert the item.

Figure 12.3 shows how TREE-INSERT works. Just like the procedures TREE-SEARCH and ITERATIVE-TREE-SEARCH, TREE-INSERT begins at the root of the tree and the pointer x traces a simple path downward looking for a NIL to replace with the input item z. The procedure maintains the trailing pointer y as the parent of x. After initialization, the while loop in lines 3–7 causes these two pointers to move down the tree, going left or right depending on the comparison of $z.key$ with $x.key$, until x becomes NIL. This NIL occupies the position where we wish to place the input item z. We need the trailing pointer y, because by the time we find the NIL where z belongs, the search has proceeded one step beyond the node that needs to be changed. Lines 8–13 set the pointers that cause z to be inserted.

Like the other primitive operations on search trees, the procedure TREE-INSERT runs in $O(h)$ time on a tree of height h.

Deletion

The overall strategy for deleting a node z from a binary search tree T has three basic cases but, as we shall see, one of the cases is a bit tricky.

- If z has no children, then we simply remove it by modifying its parent to replace z with NIL as its child.

- If z has just one child, then we elevate that child to take z’s position in the tree by modifying z’s parent to replace z by z’s child.

- If z has two children, then we find z’s successor y—which must be in z’s right subtree—and have y take z’s position in the tree. The rest of z’s original right subtree becomes y’s new right subtree, and z’s left subtree becomes y’s new left subtree. This case is the tricky one because, as we shall see, it matters whether y is z’s right child.
The procedure for deleting a given node \(z \) from a binary search tree \(T \) takes as arguments pointers to \(T \) and \(z \). It organizes its cases a bit differently from the three cases outlined previously by considering the four cases shown in Figure 12.4.

- If \(z \) has no left child (part (a) of the figure), then we replace \(z \) by its right child, which may or may not be NIL. When \(z \)'s right child is NIL, this case deals with the situation in which \(z \) has no children. When \(z \)'s right child is non-NIL, this case handles the situation in which \(z \) has just one child, which is its right child.

- If \(z \) has just one child, which is its left child (part (b) of the figure), then we replace \(z \) by its left child.

- Otherwise, \(z \) has both a left and a right child. We find \(z \)'s successor \(y \), which lies in \(z \)'s right subtree and has no left child (see Exercise 12.2-5). We want to splice \(y \) out of its current location and have it replace \(z \) in the tree.

 - If \(y \) is \(z \)'s right child (part (c)), then we replace \(z \) by \(y \), leaving \(y \)'s right child alone.

 - Otherwise, \(y \) lies within \(z \)'s right subtree but is not \(z \)'s right child (part (d)). In this case, we first replace \(y \) by its own right child, and then we replace \(z \) by \(y \).

In order to move subtrees around within the binary search tree, we define a subroutine TRANSPLANT, which replaces one subtree as a child of its parent with another subtree. When TRANSPLANT replaces the subtree rooted at node \(u \) with the subtree rooted at node \(v \), node \(u \)'s parent becomes node \(v \)'s parent, and \(u \)'s parent ends up having \(v \) as its appropriate child.

\[
\text{TRANSPLANT}(T, u, v)
\]

1. if \(u.p == \text{NIL} \)
2. \(T.root = v \)
3. elseif \(u == u.p.left \)
4. \(u.p.left = v \)
5. else \(u.p.right = v \)
6. if \(v \neq \text{NIL} \)
7. \(v.p = u.p \)

Lines 1–2 handle the case in which \(u \) is the root of \(T \). Otherwise, \(u \) is either a left child or a right child of its parent. Lines 3–4 take care of updating \(u.p.left \) if \(u \) is a left child, and line 5 updates \(u.p.right \) if \(u \) is a right child. We allow \(v \) to be NIL, and lines 6–7 update \(v.p \) if \(v \) is non-NIL. Note that TRANSPLANT does not attempt to update \(v.left \) and \(v.right \); doing so, or not doing so, is the responsibility of TRANSPLANT’s caller.
Figure 12.4 Deleting a node z from a binary search tree. Node z may be the root, a left child of node q, or a right child of q. (a) Node z has no left child. We replace z by its right child r, which may or may not be NIL. (b) Node z has a left child l but no right child. We replace z by l. (c) Node z has two children; its left child is node l, its right child is its successor y, and y's right child is node x. We replace z by y, updating y's left child to become l, but leaving x as y's right child. (d) Node z has two children (left child l and right child r), and its successor $y \neq r$ lies within the subtree rooted at r. We replace y by its own right child x, and we set y to be r's parent. Then, we set y to be q's child and the parent of l.
With the TRANSPLANT procedure in hand, here is the procedure that deletes node \(z\) from binary search tree \(T\):

\[
\text{\textsc{Tree-Delete}}(T, \ z) \\
1 \ \textbf{if} \ z.\leftarrow = \text{\textsc{Nil}} \\
2 \ \text{\textsc{Transplant}}(T, z, z.\rightarrow) \\
3 \ \textbf{elseif} \ z.\rightarrow = \text{\textsc{Nil}} \\
4 \ \text{\textsc{Transplant}}(T, z, z.\leftarrow) \\
5 \ \textbf{else} \ y = \text{\textsc{Tree-Minimum}}(z.\rightarrow) \\
6 \ \textbf{if} \ y.\p = \text{\textsc{Not}} \\
7 \ \text{\textsc{Transplant}}(T, y, y.\rightarrow) \\
8 \ y.\rightarrow = z.\rightarrow \\
9 \ y.\rightarrow.\p = y \\
10 \ \text{\textsc{Transplant}}(T, z, y) \\
11 \ y.\leftarrow = z.\leftarrow \\
12 \ y.\leftarrow.\p = y
\]

The \text{\textsc{Tree-Delete}} procedure executes the four cases as follows. Lines 1–2 handle the case in which node \(z\) has no left child, and lines 3–4 handle the case in which \(z\) has a left child but no right child. Lines 5–12 deal with the remaining two cases, in which \(z\) has two children. Line 5 finds node \(y\), which is the successor of \(z\). Because \(z\) has a nonempty right subtree, its successor must be the node in that subtree with the smallest key; hence the call to \text{\textsc{Tree-Minimum}}(z.\rightarrow). As we noted before, \(y\) has no left child. We want to splice \(y\) out of its current location, and it should replace \(z\) in the tree. If \(y\) is \(z\)’s right child, then lines 10–12 replace \(z\) as a child of its parent by \(y\) and replace \(y\)’s left child by \(z\)’s left child. If \(y\) is not \(z\)’s left child, lines 7–9 replace \(y\) as a child of its parent by \(y\)’s right child and turn \(z\)’s right child into \(y\)’s right child, and then lines 10–12 replace \(z\) as a child of its parent by \(y\) and replace \(y\)’s left child by \(z\)’s left child.

Each line of \text{\textsc{Tree-Delete}}, including the calls to \text{\textsc{Transplant}}, takes constant time, except for the call to \text{\textsc{Tree-Minimum}} in line 5. Thus, \text{\textsc{Tree-Delete}} runs in \(O(h)\) time on a tree of height \(h\).

In summary, we have proved the following theorem.

\textbf{Theorem 12.3}

We can implement the dynamic-set operations \text{\textsc{Insert}} and \text{\textsc{Delete}} so that each one runs in \(O(h)\) time on a binary search tree of height \(h\).
Exercises

12.3-1
Give a recursive version of the Tree-Insert procedure.

12.3-2
Suppose that we construct a binary search tree by repeatedly inserting distinct values into the tree. Argue that the number of nodes examined in searching for a value in the tree is one plus the number of nodes examined when the value was first inserted into the tree.

12.3-3
We can sort a given set of \(n \) numbers by first building a binary search tree containing these numbers (using Tree-Insert repeatedly to insert the numbers one by one) and then printing the numbers by an inorder tree walk. What are the worst-case and best-case running times for this sorting algorithm?

12.3-4
Is the operation of deletion “commutative” in the sense that deleting \(x \) and then \(y \) from a binary search tree leaves the same tree as deleting \(y \) and then \(x \)? Argue why it is or give a counterexample.

12.3-5
Suppose that instead of each node \(x \) keeping the attribute \(x.p \), pointing to \(x \)’s parent, it keeps \(x.succ \), pointing to \(x \)’s successor. Give pseudocode for Search, Insert, and Delete on a binary search tree \(T \) using this representation. These procedures should operate in time \(O(h) \), where \(h \) is the height of the tree \(T \). (Hint: You may wish to implement a subroutine that returns the parent of a node.)

12.3-6
When node \(z \) in Tree-Delete has two children, we could choose node \(y \) as its predecessor rather than its successor. What other changes to Tree-Delete would be necessary if we did so? Some have argued that a fair strategy, giving equal priority to predecessor and successor, yields better empirical performance. How might Tree-Delete be changed to implement such a fair strategy?

12.4 Randomly built binary search trees

We have shown that each of the basic operations on a binary search tree runs in \(O(h) \) time, where \(h \) is the height of the tree. The height of a binary search
tree varies, however, as items are inserted and deleted. If, for example, the \(n \) items are inserted in strictly increasing order, the tree will be a chain with height \(n - 1 \). On the other hand, Exercise B.5-4 shows that \(h \geq \lfloor \lg n \rfloor \). As with quicksort, we can show that the behavior of the average case is much closer to the best case than to the worst case.

Unfortunately, little is known about the average height of a binary search tree when both insertion and deletion are used to create it. When the tree is created by insertion alone, the analysis becomes more tractable. Let us therefore define a **randomly built binary search tree** on \(n \) keys as one that arises from inserting the keys in random order into an initially empty tree, where each of the \(n! \) permutations of the input keys is equally likely. (Exercise 12.4-3 asks you to show that this notion is different from assuming that every binary search tree on \(n \) keys is equally likely.) In this section, we shall prove the following theorem.

Theorem 12.4
The expected height of a randomly built binary search tree on \(n \) distinct keys is \(O(\lg n) \).

Proof We start by defining three random variables that help measure the height of a randomly built binary search tree. We denote the height of a randomly built binary search on \(n \) keys by \(X_n \), and we define the **exponential height** \(Y_n = 2^{X_n} \). When we build a binary search tree on \(n \) keys, we choose one key as that of the root, and we let \(R_n \) denote the random variable that holds this key’s **rank** within the set of \(n \) keys; that is, \(R_n \) holds the position that this key would occupy if the set of keys were sorted. The value of \(R_n \) is equally likely to be any element of the set \(\{1, 2, \ldots, n\} \). If \(R_n = i \), then the left subtree of the root is a randomly built binary search tree on \(i - 1 \) keys, and the right subtree is a randomly built binary search tree on \(n - i \) keys. Because the height of a binary tree is 1 more than the larger of the heights of the two subtrees of the root, the exponential height of a binary tree is twice the larger of the exponential heights of the two subtrees of the root. If we know that \(R_n = i \), it follows that

\[
Y_n = 2 \cdot \max(Y_{i-1}, Y_{n-i}) .
\]

As base cases, we have that \(Y_1 = 1 \), because the exponential height of a tree with 1 node is \(2^0 = 1 \) and, for convenience, we define \(Y_0 = 0 \).

Next, define indicator random variables \(Z_{n,1}, Z_{n,2}, \ldots, Z_{n,n} \), where

\[
Z_{n,i} = 1 \{ R_n = i \} .
\]

Because \(R_n \) is equally likely to be any element of \(\{1, 2, \ldots, n\} \), it follows that

\[
\Pr \{ R_n = i \} = 1/n \text{ for } i = 1, 2, \ldots, n,
\]

and hence, by Lemma 5.1, we have

\[
E[Z_{n,i}] = 1/n ,
\]

(12.1)
for \(i = 1, 2, \ldots, n \). Because exactly one value of \(Z_{n,i} \) is 1 and all others are 0, we also have

\[
Y_n = \sum_{i=1}^{n} Z_{n,i} \left(2 \cdot \max(Y_{i-1}, Y_{n-i}) \right) .
\]

We shall show that \(\mathbb{E}[Y_n] \) is polynomial in \(n \), which will ultimately imply that \(\mathbb{E}[X_n] = O(\lg n) \).

We claim that the indicator random variable \(Z_{n,i} = I\{R_n = i\} \) is independent of the values of \(Y_{i-1} \) and \(Y_{n-i} \). Having chosen \(R_n = i \), the left subtree (whose exponential height is \(Y_{i-1} \)) is randomly built on the \(i - 1 \) keys whose ranks are less than \(i \). This subtree is just like any other randomly built binary search tree on \(i - 1 \) keys. Other than the number of keys it contains, this subtree’s structure is not affected at all by the choice of \(R_n = i \), and hence the random variables \(Y_{i-1} \) and \(Z_{n,i} \) are independent. Likewise, the right subtree, whose exponential height is \(Y_{n-i} \), is randomly built on the \(n - i \) keys whose ranks are greater than \(i \). Its structure is independent of the value of \(R_n \), and so the random variables \(Y_{n-i} \) and \(Z_{n,i} \) are independent. Hence, we have

\[
\mathbb{E}[Y_n] = \mathbb{E} \left[\sum_{i=1}^{n} Z_{n,i} \left(2 \cdot \max(Y_{i-1}, Y_{n-i}) \right) \right]
\]

\[
= \sum_{i=1}^{n} \mathbb{E}[Z_{n,i}] \mathbb{E} \left[2 \cdot \max(Y_{i-1}, Y_{n-i}) \right] \quad \text{(by linearity of expectation)}
\]

\[
= \sum_{i=1}^{n} \mathbb{E}[Z_{n,i}] \mathbb{E} \left[2 \cdot \max(Y_{i-1}, Y_{n-i}) \right] \quad \text{(by independence)}
\]

\[
= \sum_{i=1}^{n} \frac{1}{n} \cdot \mathbb{E} \left[2 \cdot \max(Y_{i-1}, Y_{n-i}) \right] \quad \text{(by equation (12.1))}
\]

\[
= \frac{2}{n} \sum_{i=1}^{n} \mathbb{E} \left[\max(Y_{i-1}, Y_{n-i}) \right] \quad \text{(by equation (C.22))}
\]

\[
\leq \frac{2}{n} \sum_{i=1}^{n} (\mathbb{E}[Y_{i-1}] + \mathbb{E}[Y_{n-i}]) \quad \text{(by Exercise C.3-4)} .
\]

Since each term \(\mathbb{E}[Y_0], \mathbb{E}[Y_1], \ldots, \mathbb{E}[Y_{n-1}] \) appears twice in the last summation, once as \(\mathbb{E}[Y_{i-1}] \) and once as \(\mathbb{E}[Y_{n-i}] \), we have the recurrence

\[
\mathbb{E}[Y_n] \leq \frac{4}{n} \sum_{i=0}^{n-1} \mathbb{E}[Y_i] . \quad (12.2)
\]
Using the substitution method, we shall show that for all positive integers \(n \), the recurrence (12.2) has the solution

\[
E[Y_n] \leq \frac{1}{4} \left(\frac{n + 3}{3} \right).
\]

In doing so, we shall use the identity

\[
\sum_{i=0}^{n-1} \binom{i + 3}{3} = \binom{n + 3}{4}.
\]

(Exercise 12.4-1 asks you to prove this identity.)

For the base cases, we note that the bounds \(0 = Y_0 = E[Y_0] \leq (1/4)^{\binom{3}{3}} = 1/4 \)
and \(1 = Y_1 = E[Y_1] \leq (1/4)^{\binom{1+3}{3}} = 1/4 \) hold. For the inductive case, we have that

\[
E[Y_n] \leq \frac{4}{n} \sum_{i=0}^{n-1} E[Y_i]
\]

\[
\leq \frac{4}{n} \sum_{i=0}^{n-1} \frac{1}{4} \binom{i + 3}{3} \quad \text{(by the inductive hypothesis)}
\]

\[
= \frac{1}{n} \sum_{i=0}^{n-1} \binom{i + 3}{3}
\]

\[
= \frac{1}{n} \binom{n + 3}{4} \quad \text{(by equation (12.3))}
\]

\[
= \frac{1}{n} \cdot \frac{(n + 3)!}{4! (n - 1)!}
\]

\[
= \frac{1}{4} \cdot \frac{(n + 3)!}{3! n!}
\]

\[
= \frac{1}{4} \binom{n + 3}{3}.
\]

We have bounded \(E[Y_n] \), but our ultimate goal is to bound \(E[X_n] \). As Exercise 12.4-4 asks you to show, the function \(f(x) = 2^x \) is convex (see page 1199). Therefore, we can employ Jensen’s inequality (C.26), which says that

\[
2^{E[X_n]} \leq E[2^{X_n}]
\]

\[
= E[Y_n],
\]

as follows:

\[
2^{E[X_n]} \leq \frac{1}{4} \binom{n + 3}{3}
\]
\[
\frac{1}{4} \cdot \frac{(n + 3)(n + 2)(n + 1)}{6} = \frac{n^3 + 6n^2 + 11n + 6}{24}.
\]

Taking logarithms of both sides gives \(E[X_n] = O(\lg n) \).

Exercises

12.4-1
Prove equation (12.3).

12.4-2
Describe a binary search tree on \(n \) nodes such that the average depth of a node in the tree is \(\Theta(\lg n) \) but the height of the tree is \(\omega(\lg n) \). Give an asymptotic upper bound on the height of an \(n \)-node binary search tree in which the average depth of a node is \(\Theta(\lg n) \).

12.4-3
Show that the notion of a randomly chosen binary search tree on \(n \) keys, where each binary search tree of \(n \) keys is equally likely to be chosen, is different from the notion of a randomly built binary search tree given in this section. (Hint: List the possibilities when \(n = 3 \).)

12.4-4
Show that the function \(f(x) = 2^x \) is convex.

12.4-5
Consider RANDOMIZED-QUICKSORT operating on a sequence of \(n \) distinct input numbers. Prove that for any constant \(k > 0 \), all but \(O(1/n^k) \) of the \(n! \) input permutations yield an \(O(n \lg n) \) running time.

Problems

12-1 **Binary search trees with equal keys**
Equal keys pose a problem for the implementation of binary search trees.

a. What is the asymptotic performance of TREE-INSERT when used to insert \(n \) items with identical keys into an initially empty binary search tree?

We propose to improve TREE-INSERT by testing before line 5 to determine whether \(z.key = x.key \) and by testing before line 11 to determine whether \(z.key = y.key \).
If equality holds, we implement one of the following strategies. For each strategy, find the asymptotic performance of inserting \(n \) items with identical keys into an initially empty binary search tree. (The strategies are described for line 5, in which we compare the keys of \(z \) and \(x \). Substitute \(y \) for \(x \) to arrive at the strategies for line 11.)

b. Keep a boolean flag \(x.b \) at node \(x \), and set \(x \) to either \(x.left \) or \(x.right \) based on the value of \(x.b \), which alternates between \texttt{FALSE} and \texttt{TRUE} each time we visit \(x \) while inserting a node with the same key as \(x \).

c. Keep a list of nodes with equal keys at \(x \), and insert \(z \) into the list.

d. Randomly set \(x \) to either \(x.left \) or \(x.right \). (Give the worst-case performance and informally derive the expected running time.)

12-2 Radix trees

Given two strings \(a = a_0a_1\ldots a_p \) and \(b = b_0b_1\ldots b_q \), where each \(a_i \) and each \(b_j \) is in some ordered set of characters, we say that string \(a \) is **lexicographically less than** string \(b \) if either

1. there exists an integer \(j \), where \(0 \leq j \leq \min(p,q) \), such that \(a_i = b_i \) for all \(i = 0, 1, \ldots, j - 1 \) and \(a_j < b_j \), or
2. \(p < q \) and \(a_i = b_i \) for all \(i = 0, 1, \ldots, p \).

For example, if \(a \) and \(b \) are bit strings, then \(10100 < 10110 \) by rule 1 (letting \(j = 3 \)) and \(10100 < 101000 \) by rule 2. This ordering is similar to that used in English-language dictionaries.

The **radix tree** data structure shown in Figure 12.5 stores the bit strings 1011, 10, 011, 100, and 0. When searching for a key \(a = a_0a_1\ldots a_p \), we go left at a node of depth \(i \) if \(a_i = 0 \) and right if \(a_i = 1 \). Let \(S \) be a set of distinct bit strings whose lengths sum to \(n \). Show how to use a radix tree to sort \(S \) lexicographically in \(\Theta(n) \) time. For the example in Figure 12.5, the output of the sort should be the sequence 0, 011, 10, 100, 1011.

12-3 Average node depth in a randomly built binary search tree

In this problem, we prove that the average depth of a node in a randomly built binary search tree with \(n \) nodes is \(O(\lg n) \). Although this result is weaker than that of Theorem 12.4, the technique we shall use reveals a surprising similarity between the building of a binary search tree and the execution of \textsc{Randomized-QuickSort} from Section 7.3.

We define the **total path length** \(P(T) \) of a binary tree \(T \) as the sum, over all nodes \(x \) in \(T \), of the depth of node \(x \), which we denote by \(d(x, T) \).
Figure 12.5 A radix tree storing the bit strings 1011, 10, 011, 100, and 0. We can determine each node’s key by traversing the simple path from the root to that node. There is no need, therefore, to store the keys in the nodes; the keys appear here for illustrative purposes only. Nodes are heavily shaded if the keys corresponding to them are not in the tree; such nodes are present only to establish a path to other nodes.

(a) Argue that the average depth of a node in T is

$$\frac{1}{n} \sum_{x \in T} d(x, T) = \frac{1}{n} P(T).$$

Thus, we wish to show that the expected value of $P(T)$ is $O(n \log n)$.

(b) Let T_L and T_R denote the left and right subtrees of tree T, respectively. Argue that if T has n nodes, then

$$P(T) = P(T_L) + P(T_R) + n - 1.$$

c. Let $P(n)$ denote the average total path length of a randomly built binary search tree with n nodes. Show that

$$P(n) = \frac{1}{n} \sum_{i=0}^{n-1} (P(i) + P(n-i-1) + n - 1).$$

d. Show how to rewrite $P(n)$ as

$$P(n) = \frac{2}{n} \sum_{k=1}^{n-1} P(k) + \Theta(n).$$

e. Recalling the alternative analysis of the randomized version of quicksort given in Problem 7-3, conclude that $P(n) = O(n \log n)$.

At each recursive invocation of quicksort, we choose a random pivot element to partition the set of elements being sorted. Each node of a binary search tree partitions the set of elements that fall into the subtree rooted at that node.

\section{12-4 Number of different binary trees}

Let \(b_n \) denote the number of different binary trees with \(n \) nodes. In this problem, you will find a formula for \(b_n \), as well as an asymptotic estimate.

\subsection{a.}

Show that \(b_0 = 1 \) and that, for \(n \geq 1 \),

\[
b_n = \sum_{k=0}^{n-1} b_k b_{n-1-k}.
\]

\subsection{b.}

Referring to Problem 4-4 for the definition of a generating function, let \(B(x) \) be the generating function

\[
B(x) = \sum_{n=0}^{\infty} b_n x^n.
\]

Show that \(B(x) = xB(x)^2 + 1 \), and hence one way to express \(B(x) \) in closed form is

\[
B(x) = \frac{1}{2x} \left(1 - \sqrt{1 - 4x} \right).
\]

The \textit{Taylor expansion} of \(f(x) \) around the point \(x = a \) is given by

\[
f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k,
\]

where \(f^{(k)}(x) \) is the \(k \)th derivative of \(f \) evaluated at \(x \).

\subsection{c.}

Show that

\[
b_n = \frac{1}{n+1} \binom{2n}{n}
\]
(the \(n \)th \textbf{Catalan number}) by using the Taylor expansion of \(\sqrt{1 - 4x} \) around \(x = 0 \). (If you wish, instead of using the Taylor expansion, you may use the generalization of the binomial expansion (C.4) to nonintegral exponents \(n \), where for any real number \(n \) and for any integer \(k \), we interpret \(\binom{n}{k} \) to be \(n(n-1) \cdots (n-k+1)/k! \) if \(k \geq 0 \), and 0 otherwise.)

d. Show that

\[
b_n = \frac{4^n}{\sqrt{\pi n^{3/2}}} \left(1 + O(1/n)\right).
\]

Chapter notes

Knuth [211] contains a good discussion of simple binary search trees as well as many variations. Binary search trees seem to have been independently discovered by a number of people in the late 1950s. Radix trees are often called “tries,” which comes from the middle letters in the word \textit{retrieval}. Knuth [211] also discusses them.

Many texts, including the first two editions of this book, have a somewhat simpler method of deleting a node from a binary search tree when both of its children are present. Instead of replacing node \(z \) by its successor \(y \), we delete node \(y \) but copy its key and satellite data into node \(z \). The downside of this approach is that the node actually deleted might not be the node passed to the delete procedure. If other components of a program maintain pointers to nodes in the tree, they could mistakenly end up with “stale” pointers to nodes that have been deleted. Although the deletion method presented in this edition of this book is a bit more complicated, it guarantees that a call to delete node \(z \) deletes node \(z \) and only node \(z \).

Section 15.5 will show how to construct an optimal binary search tree when we know the search frequencies before constructing the tree. That is, given the frequencies of searching for each key and the frequencies of searching for values that fall between keys in the tree, we construct a binary search tree for which a set of searches that follows these frequencies examines the minimum number of nodes.

The proof in Section 12.4 that bounds the expected height of a randomly built binary search tree is due to Aslam [24]. Martínez and Roura [243] give randomized algorithms for insertion into and deletion from binary search trees in which the result of either operation is a random binary search tree. Their definition of a random binary search tree differs—only slightly—from that of a randomly built binary search tree in this chapter, however.