Understanding Organizational Style and Its Impact on Information Systems

Systems Analysis and Design, 7e
Kendall & Kendall

©2008 Pearson Prentice Hall
Learning Objectives

• Understand that organizations and their members are systems and that analysts need to take a systems perspective
• Depict systems graphically using context-level data flow diagrams, and entity-relationship models, use cases and use case scenarios
• Recognize that different levels of management require different systems
• Comprehend that organizational culture impacts the design of information systems
Three Main Forces Interacting to Shape Organizations

- Levels of management
- Design of organizations
- Organizational cultures
Organizations Are Composed of Interrelated Subsystems

- Influenced by levels of management decision makers that cut horizontally across the organizational system
 - Operations
 - Middle management
 - Strategic management
- Influenced by organizational cultures and subcultures
Major Topics

- Organizations as systems
- Depicting systems graphically
 - Data flow diagram
 - Entity-relationship model
 - Use case modeling
- Levels of management
- Organizational culture
Organizations As Systems

- Conceptualized as systems designed to accomplish predetermined goals and objectives
- Composed of smaller, interrelated systems serving specialized functions
- Specialized functions are reintegrated to form an effective organizational whole
Interrelatedness and Independence of Systems

- All systems and subsystems are interrelated and interdependent
- All systems process inputs from their environments
- All systems are contained by boundaries separating them from their environments
- System feedback for planning and control
- An ideal system self-corrects or self-regulates itself
Figure 2.1 System outputs serve as feedback that compares performance with goals
Organizational Environments

• Community
 • Physical location
 • Demographic profile (education, income)

• Economic
 • Market factors
 • Competition

• Political
 • State and local government
Openness and Closedness

- **Open**
 - Free flow of information
 - Output from one system becomes input to another

- **Closed**
 - Restricted access to information
 - Limited by numerous rules
 - Information only on a “need to know” basis
Virtual Organizations and Virtual Teams

• A virtual organization has parts of the organization in different physical locations

• Computer networks and communications technology are used to bring virtual teams together to work on projects
Benefits of Virtual Organizations and Teams

• Possibility of reducing costs of physical facilities
• More rapid response to customer needs
• Helping virtual employees to fulfill their familial obligations to children or aging parents
Taking a Systems Perspective

- Allows system analyst to understand businesses before they begin their tasks
- It is important that members of subsystems realize that they are interrelated with other subsystems
- Problems occur when each manager thinks that his/her department is the most important
- Bigger problems may occur when that manager rises through the ranks
Taking a Systems Perspective

FIGURE 2.2
Outputs from one department serve as inputs for another such that subsystems are interrelated.

Outputs from marketing become the inputs for production.
Outputs from production become the inputs for marketing.
Taking a Systems Perspective

FIGURE 2.3
A depiction of the personal perspective of functional managers shows that they feature their own functional area as central to the organization.

How a Marketing Manager May View the Organization

How a Production Manager May See the Organization
Enterprise Resource Planning

• Enterprise Resource Planning (ERP) describes an integrated organizational information system

• Software that helps the flow of information between the functional areas within the organization
Depicting Systems Graphically

- Context-level data flow diagrams
- Entity-relationship model
- Use Case Modeling
Context-Level Data Flow Diagrams

• Focus is on the data flowing into and out of the system and the processing of the data
Figure 2.4 The basic symbols of a data flow diagram

A **process** means that some action or group of actions take place.

An **entity** is a person, group, department, or any system that either receives or originates information or data.

A **data flow** shows that information is being passed from or to a process.
Airline Reservation System

FIGURE 2.5
A context-level data flow diagram for an airline reservation system.
Entity-Relationship Model

• Focus is on the entities and their relationships within the organizational system
Relationships

- Relationships show how the entities are connected
- Three types of relationships
 - One-to-one
 - One-to-many
 - Many-to-many
Entity-Relationship Example

FIGURE 2.7
An entity-relationship diagram showing a many-to-one relationship.
Figure 2.8 Examples of different types of relationships in E-R diagrams
Entities

- Fundamental entity
- Associative entity
- Attributive entity
Figure 2.9 Three different types of entities used in E-R diagrams

- **Fundamental Entity**: Usually a real entity: a person, place, or thing.
- **Associative Entity**: Something created that joins two entities.
- **Attributive Entity**: Something useful in describing attributes, especially repeating groups.
Attributes

- Data attributes may be added to the diagram

```
Patron
Patron Name
Patron address
Patron phone
Patron credit card
```
Creating Entity-Relationship Diagrams

- List the entities in the organization
- Choose key entities to narrow the scope of the problem
- Identify what the primary entity should be
- Confirm the results of the above through data gathering
Figure 2-12 A more complete E-R diagram showing data attributes of the entities
Use Case Modeling

• Describes what a system does without describing how the system does it; that is, it is a logical model of the system.
Use Case Diagram

- **Actor**
 - Refers to a particular role of a user of the system
 - Similar to external entities; they exist outside of the system
- **Use case symbols**
 - An oval indicating the task of the use case
- **Connecting lines**
 - Arrows and lines used to diagram behavioral relationships
Actor

- Divided into two groups
 - Primary actors
 - Supply data or receive information from the system
 - Provide details on what the use case should do
 - Supporting actors
 - Help to keep the system running or provide help
 - The people who run the help desk, the analysts, programmers, and so on
A Use Case Always Provides Three Things

- An actor that initiates an event
- The event that triggers a use case
- The use case that performs the actions triggered by the event
Use Case Relations

• Behavioral relationships
 • Communicates
 • Used to connect an actor to a use case
 • Includes
 • Describes the situation in which a use case contains behavior that is common to more than one use case
Behavioral relationships (Continued)

- Extends
 - Describes the situation in which one use case possesses the behavior that allows the new case to handle a variation or exception from the basic use case

- Generalizes
 - Implies that one thing is more typical than the other thing
Figure 2.13 Some components of use case diagrams showing actors, use cases, and relationships for a student enrollment example

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communicates</td>
<td></td>
<td>An actor is connected to a use case using a line with no arrowheads.</td>
</tr>
<tr>
<td>Includes</td>
<td></td>
<td>A use case contains a behavior that is common to more than one other use case. The arrow points to the common use case.</td>
</tr>
<tr>
<td>Extends</td>
<td></td>
<td>A different use case handles exceptions from the basic use case. The arrow points from the extended to the basic use case.</td>
</tr>
<tr>
<td>Generalizes</td>
<td></td>
<td>One UML “thing” is more general than another “thing.” The arrow points to the general “thing.”</td>
</tr>
</tbody>
</table>
Figure 2.14 Examples of use cases and behavioral relationships for student enrollment
Developing Use Case Diagrams

- Review the business specifications and identify the actors involved
- Identify the high-level events and develop the primary use cases that describe those events and how the actors initiate them
- Review each primary use case to determine the possible variations of flow through the use case
- The context-level data flow diagram could act as a starting point for creating a use case
Figure 2.15 A use case diagram representing a system used to plan a conference.
Developing the Use Case Scenarios

- The description of the use case
- Three main areas
 - Use case identifiers and initiators
 - Steps performed
 - Conditions, assumptions, and questions
Figure 2.16 A use case scenario is divided into three sections: identification and initiation; steps performed; and conditions, assumptions, and questions.
Why Use Case Diagrams Are Helpful

- Identify all the actors in the problem domain
- Actions that need to be completed are also clearly shown on the use case diagram
- The use case scenario is also worthwhile
- Simplicity and lack of technical detail
Figure 2.17 The main reasons for writing use cases are their effectiveness in communicating with users and their capturing of user stories.

- Use cases effectively communicate systems requirements because the diagrams are kept simple.
- Use cases allow people to tell stories.
- Use case stories make sense to nontechnical people.
- Use cases do not depend on a special language.
- Use cases can describe most functional requirements (such as interactions between actors and applications).
- Use cases can describe nonfunctional requirements (such as performance and maintainability) through the use of stereotypes.
- Use cases help analysts define boundaries.
- Use cases can be traceable, allowing analysts to identify links between use cases and other design and documentation tools.
Figure 2.18 Management in organizations exists on three horizontal levels: operational control, managerial planning and control, and strategic management.
Operations Control

- Make decisions using predetermined rules that have predictable outcomes
- Oversee the operating details of the organization
Managerial Planning and Control

• Make short-term planning and control decisions about resources and organizational objectives

• Decisions may be partly operational and partly strategic
Strategic Management

- Look outward from the organization to the future
- Make decisions that will guide middle and operations managers
- Work in highly uncertain decision-making environment
- Define the organization as a whole
Managerial Levels

- Different organization structure
- Leadership style
- Technological considerations
- Organization culture
- Human interaction
- All carry implications for the analysis and design of information systems
Organizational Culture

- Organizations have cultures and subcultures
- Learn from verbal and nonverbal symbolism
Verbal Symbolism

- Myths
- Metaphors
- Visions
- Humor
Nonverbal Symbolism

- Shared artifacts
 - Trophies, etc.
- Rites and rituals
 - Promotions
 - Birthdays, etc.
- Clothing worn
- Office placement and decorations
Summary

- Organizational fundamentals
 - Organizations as systems
 - Levels of management
 - Organizational culture

- Graphical representation of systems
 - DFD
 - ERD

- Use case diagrams and scenarios
Summary (Continued)

• Levels of managerial control
 • Operational
 • Middle management
 • Strategic

• Organizational culture