Chapter 2: Solving Problems by Searching (5)
Local Search Algorithms & Optimization Problems

Nguyễn Hải Minh, Ph.D
nhminh@fit.hcmus.edu.vn
Outline

1. Optimization Problems
2. Hill-climbing search
3. Simulated Annealing search
4. Local beam search
5. Genetic algorithm
Local Search Algorithms & Optimization Problems

 Previous lecture:
 o **Path** to Goal is solution to problem
 → systematic exploration of search space: Global Search

 This lecture:
 o A **State** is solution to problem (path is irrelevant)
 o E.g., 8-queens
 → Different algorithms can be used: Local Search
Two types of Problems

Goal Satisfaction
reach the goal node
Constraint Satisfaction

Optimization
Optimize objective $f(n)$
Constraint Optimization

Global Search Algorithms

Local Search Algorithms
Local Search Algorithms & Optimization Problems

❑ Global search:
 o Can solve n-queen for $n = 200$
 o Algorithm: ?

❑ Local search:
 o Can solve n-queen for $n = 1,000,000$
 o Algorithm:
 • Hill-climbing
Local Search Algorithms & Optimization Problems

- Local search
 - Keep track of single current state
 - Move only to neighboring states
 - Ignore paths

- Advantages:
 1. Use very little memory
 2. Can often find reasonable solutions in large or infinite (continuous) state spaces.
Local Search Algorithms & Optimization Problems

“Pure optimization” problems

- All states have an objective function
- Goal is to find state with max (or min) objective value
- Does not quite fit into path-cost/goal-state formulation
- Local search can do quite well on these problems.

Examples:

- n-queens
- Machine Allocation
- Office Assignment
- Travelling Sale-person Problem
- Integrated-circuit design...
State-space Landscape of Searching for Max

- **Objective function**
- **Global maximum**
- **Shoulder**
- **Local maximum**
- **"Flat" local maximum**
- **Current state**
- **State space**
Hill-climbing search

- A **loop** that continuously moves in the direction of increasing value → **uphill**
 - terminates when a peak is reached
 - **greedy local search**

- Value can be either:
 - Objective function value (maximized)
 - Heuristic function value (minimized)

- Characteristics:
 - Does not look ahead of the immediate neighbors of the current state.
 - Can randomly choose among the set of best successors, if multiple have the best value
 - **trying to find the top of Mount Everest while in a thick fog**
Hill-climbing search

Function HILL-CLIMBING(*problem*) **returns** a state that is a local maximum

\[\text{current} \leftarrow \text{MAKE-NODE}(*problem*.\text{INITIAL-STATE})\]

Loop do

\[\text{neighbor} \leftarrow \text{a highest-valued successor of current}\]

If \(\text{neighbor. VALUE} \leq \text{current. VALUE}\) **then return** \(\text{current. STATE}\)

\[\text{current} \leftarrow \text{neighbor}\]

Locality: move to best node that is next to current state

Termination: stop when local neighbors are no better than current state

This version of HILL-CLIMBING found local maximum.
Hill-climbing example: n-queens

- n-queens problem:
 - complete-state formulation:
 - All n queens on the board, 1 per column
 - Successor function:
 - move a single queen to another square in the same column.
 → Each state has ? successors

- Example of a heuristic function \(h(n) \):
 - the number of pairs of queens that are attacking each other (directly or indirectly)
 - We want to reach \(h = 0 \) (global minimum)
Hill-climbing example: 8-queens

\[(c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8) = (5, 6, 7, 4, 5, 6, 7, 6)\]

An 8-queens state with heuristic cost estimate \(h=17\), showing the value of \(h\) for each possible successor obtained by moving a queen within its column.
Hill-climbing example: 8-queens

(q c1 c2 c3 c4 c5 c6 c7 c8) = (8 3 7 4 2 5 1 6)

A local minimum in the 8-queens state space; the state has h=1 but every successor has a higher cost.
Performance of hill-climbing on 8-queens

- Randomly generated 8-queens starting states
 - 14% the time it solves the problem
 - 86% of the time it get stuck at a local minimum

- However...
 - Takes only 4 steps on average when it succeeds
 - And 3 on average when it gets stuck
 (for a state space with ~17 million states)
Hill-climbing drawbacks

- **Local Maxima**: a peak higher than its neighboring states but lower than the global maximum

 → *Hill-climbing is suboptimal*

- **Ridge**: sequence of local maxima difficult for greedy algorithms to navigate

- **Plateau**: (Shoulders) an area of the state space where the evaluation function is flat.
Escaping Shoulders: Sideways Moves

- If no downhill (uphill) moves, allow *sideways* moves in hope that algorithm can escape
 - Need to place a **limit** on the possible number of sideways moves to avoid infinite loops

- For 8-queens
 - Now allow sideways moves with a limit of 100
 - Raises percentage of problem instances solved from 14 to **94%**
 - However....
 - 21 steps for every successful solution
 - 64 for each failure
Hill-climbing variations

1. Stochastic hill-climbing
 - Random selection among the uphill moves.
 - The selection probability can vary with the steepness of the uphill move.
 \[\rightarrow \text{converges more slowly than steepest ascent, but in some state landscapes, it finds better solutions} \]

2. First-choice hill-climbing
 - Generating successors randomly until a better one is found.
 \[\rightarrow \text{Useful when there are a very large number of successors.} \]

3. Random-restart hill-climbing
Random Restarts Hill-climbing

❑ Tries to avoid getting stuck in local maxima.

❑ Different variations
 o For each restart: run until termination vs run for a fixed time
 o Run a fixed number of restarts or run indefinitely

❑ Analysis
 o Say each search has probability p of success
 • E.g., for 8-queens, $p = 0.14$ with no sideways moves

 o Expected number of restarts?
 o Expected number of steps taken?

CuuDuongThanCong.com https://fb.com/tai lieu dientuacntt
Search using Simulated Annealing

Idea:

Escape local maxima by allowing some “bad” moves (downhill) but *gradually decrease* their size and frequency

- **Probability** of taking downhill move decreases with number of iterations, steepness of downhill move
- Controlled by **annealing schedule**

→ *Inspired by tempering of glass, metal*
Physical Interpretation of Simulated Annealing

Annealing = physical process of cooling a liquid or metal until particles achieve a certain frozen crystal state.

- Simulated Annealing:
 - free variables are like particles
 - seek “low energy” (high quality) configuration
 - get this by slowly reducing temperature T, which particles move around randomly
Search using Simulated Annealing

```python
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
       schedule, a mapping from time to "temperature"

current ← MAKE-NODE(problem.INITIAL-STATE)
for t = 1 to ∞ do
    T ← schedule(t)
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← next.VALUE - current.VALUE
    if ΔE > 0 then current ← next
    else current ← next only with probability $e^{ΔE/T}$
```

Temperature reduction:
slowly decrease T over time

Good neighbors:
always accept better local moves

Bad neighbors: accept in proportion to "badness"
Effect of Temperature

If temperature decreases slowly enough, the algorithm will find a global optimum with probability approaching 1.
Search using Simulated Annealing

- Despite the many local maxima in this graph, the global maximum can still be found using simulated annealing
Example on Simulated Annealing

- Lets say there are 3 moves available, with changes in the objective function of
 - $\Delta E_1 = -0.1$
 - $\Delta E_2 = 0.5$ (good move)
 - $\Delta E_3 = -5$

- Let $T=1$, pick a move randomly:
 - if ΔE_2 is picked, move there.
 - if ΔE_1 ΔE_3 are picked:
 - move 1: $\text{prob}_1 = e^{\Delta E/T} = e^{-0.1} = 0.9$
 - move 3: $\text{prob}_3 = e^{\Delta E/T} = e^{-5} = 0.05$

- T = “temperature” parameter
 - high T => probability of “locally bad” move is higher
 - low T => probability of “locally bad” move is lower
 - Typically, T is decreased as the algorithm runs longer
 - i.e., there is a “temperature schedule”
Simulated Annealing in Practice

Simulated annealing was first used extensively to solve VLSI layout problems in the early 1980s.

Other applications:
- Traveling Salesman Problem
- Factory Scheduling
- Timetable Problem
- Image Processing
- ...

Useful for some problems, but can be very slow
- Because T must be decreased very gradually to retain optimality

How do we decide the rate at which to decrease T?
- This is a practical problem with this method
Local beam search

- Idea: Keeping only one node in memory is an extreme reaction to memory problems.

- Keep track of k states instead of one
 - Initially: k randomly selected states
 - Next: determine all successors of k states
 - If any of successors is goal \rightarrow finished
 - Else select k best from successors and repeat
Local beam search

- Major difference with random-restart search
 - Information is shared among k search threads.
 - *Searches that find good states recruit other searches to join them*
Local beam search

Problem: quite often, all k states end up on same local hill

→ Stochastic beam search: choose k successors randomly, biased towards good ones.

→ Resemblance to the process of natural selection
 • “successors” (offspring) of a “state” (organism) populate the next generation according to its “value” (fitness).

Natural Selection in action
Genetic algorithms

Twist on Local Search:
- successor is generated by combining two parent states

A state is represented as a string over a finite alphabet (e.g. binary)
- 8-queens
 - State = position of 8 queens each in a column
 => $8 \times \log(8)$ bits = 24 bits (for binary representation)
Genetic algorithms

- Start with \(k\) randomly generated states (population).
- Evaluation function (fitness function).
 - Higher values for better states.
 - Opposite to heuristic function, e.g., \#non-attacking pairs in 8-queens
- Produce the next generation of states by “simulated evolution”
 - Random selection
 - Crossover
 - Random mutation
Genetic algorithms

Start

Initial Population

Fitness calculation

STOP?

Yes

End

No

Selection

Cross-over

New population

Mutation

Next generation building

CuuDuongThanCong.com

https://fb.com/tailieudientucntt
Genetic algorithms

- Genetic representation:
 - Use integers
 - Use bit string

- Fitness function: number of non-attacking pairs of queens (min = 0, max = \(8 \times 7/2 = 28\))
 - \(24/(24+23+20+11) = 31\%\)
 - \(23/(24+23+20+11) = 29\%\) etc
Genetic algorithms

(a) Initial Population

(b) Fitness Function

(c) Selection

(d) Crossover

(e) Mutation

4 states for 8-queens problem

2 pairs of 2 states randomly selected based on fitness. Random crossover points selected

New states after crossover

Random mutation applied

24748552
32752411
24415124
32543213

24 31%
23 29%
20 26%
11 14%

32752411
32752411
24415124
24415411

32748552
24748552
32752124
32752124

24752411
24752411
3252124
24415411

32748552
32748552
24752411
24752411

3252124
3252124
24415411
24415411

05/29/2018
Nguyễn Hải Minh @ FIT

CuuDuongThanCong.com
https://facebook.com/tai lieu duentacntt
Genetic algorithms

Has the effect of “jumping” to a completely different new part of the search space (quite non-local)
Genetic algorithm pseudocode

```python
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual

inputs: population, a set of individuals
        FITNESS-FN, a function that measures the fitness of an individual

repeat
    new_population ← empty set
    for i = 1 to SIZE(population) do
        x ← RANDOM-SELECTION(population, FITNESS-FN)
        y ← RANDOM-SELECTION(population, FITNESS-FN)
        child ← REPRODUCE(x, y)
        if (small random probability) then child ← MUTATE(child)
        add child to new_population
    population ← new_population
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to FITNESS-FN
```
Genetic algorithm pseudocode

```
function REPRODUCE(x, y) returns an individual
    inputs: x, y, parent individuals

    n ← LENGTH(x); c ← random number from 1 to n
    return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
```
Comments on genetic algorithms

Positive points

- Random exploration can find solutions that local search can’t
 - (via crossover primarily)
 - Can solve “hard” problem
- Rely on very little domain knowledge
- Appealing connection to human evolution
 - E.g., see related area of genetic programming
Comments on genetic algorithms

Positive points

- Solution Quality
 - Search Space
 - a. The beginning search space
 - b. The search space after n generations
Comments on genetic algorithms

Negative points

- Large number of “tunable” parameters
 - Difficult to replicate performance from one problem to another
- Lack of good empirical studies comparing to simpler methods
- Useful on some (small?) set of problems but no convincing evidence that GAs are better than hill-climbing w/random restarts in general

Application: Genetic Programming!
Next class

❖ Chapter 2: Solving Problems by Searching (cont.)
 ○ Adversarial Search (Games)