Wireless Network Security
Spring 2015

Patrick Tague
Class #9 - MAC Misbehavior;
OMNET++ Tutorial II
Reminder: Assignments

• Assignment #2 is due today
 – 11:59pm PST

• Assignment #3 is posted, due March 5
 – It's based on today's material
Class #9

- IEEE 802.11 MAC layer
- Misbehavior in 802.11 MAC
- A few other MAC threats (time permitting)
- More OMNET++
IEEE 802.11

• Infrastructure mode
 – Many stations share an AP connected to Internet
 • Distributed coordination function (DCF)
 • Point control functions (PCF)
 - Rarely used due to inefficiency, vague standard specification, and lack of interoperability support

• Ad hoc mode
 – Multi-hop, no infrastructure, no Internet
 – Never really picked up commercially

• Mesh mode (using 802.11s)
• WiFi Direct
802.11 MAC

- Responsibilities of the MAC layer
 - Logical responsibilities
 - Addressing
 - Fragmentation
 - Error detection, correction, and management
 - Timing responsibilities
 - Channel management
 - Link flow control
 - Collision avoidance

- Today, we focus on timing-based vulnerabilities
CSMA

- Carrier Sense Multiple Access
 - Listen to the channel before transmitting
 - If channel is quiet, transmit
 - After a short delay (DIFS = DCF Inter-Frame Spacing)
 - If channel is busy:
 - Wait until it's quiet for a DIFS period
 - Wait for random backoff period
 - Send if still quiet
 - Wait for ACK or retransmit using random backoff
DCF Operation using CSMA

Sender 1

Receiver

Sender 2

Data

ACK

NAV

DIFS

SIFS

DIFS
Random Backoff

• Reduce the chance of collisions
 – Each device must wait a random duration depending on past contention - use “contention window” CW
 – If medium is busy:
 • Wait for DIFS period
 • Set backoff counter randomly in CW
 • Transmit after counter time expires
 – After failed retransmissions:
 • Increase CW exponentially
 • $2^n - 1$ from CW_{min} to CW_{max}, e.g., $7 \rightarrow 15 \rightarrow 31$
Collision Avoidance

• Attempt to make channel reservation to avoid collisions by other senders
 – Request to Send (RTS)
 • Before transmitting data, sender transmits RTS
 – Clear to Send (CTS)
 • Receiver transmits CTS to tell sender to proceed
 – RTS and CTS use short IFS (SIFS < DIFS) to give priority over data packets
• RTS/CTS is not required
 – S1-R1 use RTS/CTS, S2-R2 do not
MAC Layer Misbehavior

• 802.11 DCF works well under the assumption that everyone plays nicely together
 – This may have been a reasonable assumption when MAC protocols were hardware-bound

• However, selfish and malicious nodes are free to arbitrarily break the rules
 – Software MAC makes this very easy to do
What are some of the different ways to misbehave at the MAC layer?
MAC Jamming

• DCF structure and behavior gives advantages to jamming attackers
 – Jamming after RTS (and SIFS period) blocks CTS (prevents data flow) and occupies channel (prevents other senders from using it)
 – Low duty-cycle attack → order-of-magnitude efficiency gain
MAC Blocking

- DCF structure and behavior gives advantages to other DoS attackers
 - RTS/CTS “flooding” - repeated sending of RTS/CTS exchanges while other senders obey the rules
MAC Greed w/ Jamming

- Greedy/malicious sources can block or collide with other sources, causing their sending rates to decrease
 - Gives more opportunity to greedy source

Lost CTS \rightarrow increase CW \rightarrow more BW for MS/MR
MAC Greed w/ Parameters

- Greedy/malicious sources can manipulate protocol parameters for unfair resource usage.

Artificially low/non-random backoff → high success rate → more BW for MS/MR
Example

- 4 clients, all cooperating (using OMNET++)
Example

- 4 clients, 1 using backoff = 0
Example

- 4 clients, 2 using backoff = 0
Example

- 4 clients, 1 using backoff / 2
Example

- 4 clients, 2 using backoff / 2
Cheating in CSMA/CA

[Čagalj et al., 2004]

• “CSMA/CA was designed with the assumption that the nodes would play by the rules”
 – MAC cheaters deliberately fail to follow the IEEE 802.11 protocol, in particular in terms of the contention window size and backoff
System Game Model

- N tx-rx pairs in a single collision domain, using 802.11, C of N are cheaters with control of MAC layer parameters
- Cheaters want to maximize avg. throughput r_i
- As a game:
 - Each player (cheater) adjusts its contention window size W_i to maximize utility $U_i = r_i$
 - Players react to changes of remaining $N-C$ users who play by the rules
- Authors analyze relationships between throughput and contention window sizes
Single Static Cheater

• **First case:** a single cheater with a fixed strategy (i.e. makes a decision and sticks with it)

• A single cheater gets best throughput at $W_i=1$

• In fact, $W_i=1$ is the Nash Equilibrium for the static game with $C=1$
Multiple Static Cheaters

- **Second case:** many cheaters with fixed strategy
 - 2.1 Cheaters don't know about each other
 - 2.2 Cheaters are aware of cheater v. cheater competition in forming strategies

- Window size $W_i=1$ is no longer optimal
Dynamic Cheating Game

- In the dynamic game, cheaters can change their strategy in response to other players (including other cheaters)
 - A penalty is enforced on the utility function, so cheaters converge to the optimal operating point
 - “Cooperative cheaters” can inflict the penalty on “non-cooperative cheaters” by jamming their packets
Distributed/Adaptive Cheating

- Cheaters can observe actual throughput and jamming to adapt contention window size
 - Cheaters are forced to cooperate or get lower throughput due to penalization from other cheaters
Detecting Greedy Behavior

[Raya et al., 2006]

- Detection Of greedy behavior in the Mac layer of IEEE 802.11 public Networks (DOMINO)
 - Software installed at/near the access point that can detect and identify greedy players
 - No changes to software of benign players
DOMINO Architecture

Traffic traces of M collected in one monitoring period

Test 1

Test i

Test 6

Test i

Deviation Estimation Component (DEC)

Anomaly Detection Component (ADC)

Decision Making Component (DMC)

Aggregation Component (AC)

Behavior Classification Component (BCC)

M is misbehaving

Inform the operator

M is well-behaved

BCC

misbehavior

thr

AC = f(Tests 1 to 6)

thr = tolerance threshold

f() = [OR, weighted sum, ...]
Behavior Tests

- The DOMINO-enabled AP performs a number of behavioral tests as a decision-making basis:
 - Scrambled / re-transmitted frames
 - Shorter than DIFS
 - Oversized NAV
 - Observed back-off
 - Consecutive back-off
UDP vs. TCP Traffic

• Impact of misbehavior varies for different types of target traffic
 – Disparity between cheater and benign users is higher in UDP case
UDP vs. TCP Detection

- Traffic type also has significant impact on detection capabilities of DOMINO
 - Actual back-off test in UDP vs. Consecutive back-off test in TCP
- TCP congestion control causes additional timing-related behaviors that can cause detection error
Further Discussions in Paper

• The DOMINO paper talks about a lot of different types of misbehavior
 – Jamming attacks, timing misbehavior, etc.

• Design of a deployable system
 – Lots of design parameters to choose
 – Analysis of numerous types of misbehavior
 – Incorporation of security mechanisms, quality of service, wireless error scenarios (e.g., hidden terminal)
Fairness in 802.11

- 802.11 incorporates various fairness mechanisms
 - Provides fairness regardless of connection quality
 - Allows low-quality connections to occupy the medium for much longer than high-quality connections
Implicit Jamming in 802.11
[Broustis et al., 2009]

- 802.11 has a built-in fairness mechanism that basically allows all users to get the same long-term throughput
 - A clever attacker can take advantage of this property to deny service to others by jamming a single user
 - Degradation of the single user effectively starves the other users
 - Jamming an end node is not necessarily observable by the AP, so detection is much harder
Implicit Jamming

- Low-power jammer attacks a single nearby node, degrades throughput for every user using the same AP.
Mitigating Implicit Jamming

- FIJI: anti-jamming mitigation of the implicit jamming attack
 - Goal 1: ensure that nodes not under attack are not indirectly affected by the attack
 - Goal 2: ensure that the maximum amount of traffic is delivered to the node under attack, given that the node is under attack

- Both goals rely on explicit detection of the jamming attack
FIJI Detection Component

• Detection module
 – Since FIJI is run/managed entirely at the AP, detection must also take place there; not typical jamming attack detection
 – Standard jamming detection mechanisms (e.g., using RSSI+PDR) don't apply, need other metrics
 – Instead, look for changes in transmission delay
 • Very large increment in measured transaction time indicates the node is under attack
FIJI Traffic Component

- Adjust the traffic patterns to all clients based on detection events
 - Trivial solution: don't send any data to jammed clients, but this is unfair and could lead to big problems if any detection errors occur
 - Accept traffic degradation to attacked node, but keep traffic patterns constant for other nodes
 - Two approaches to deal with the attacked node:
 - Adjust the data packet size: shorter packet fragments are more likely to get through
 - Adjust the data rate: send to the jammed nodes less often
FIJI Evaluation

![Graph showing transmission delay and throughput with and without jammer for different clients.]

- **Transmission Delay (msec):**
 - Client 1: 45
 - Client 2: 15
 - Client 3: 30
 - Client 4: 45
 - Client 5: 60

- **Throughput (Mbps):**
 - Client 13: 5
 - Client 19: 3
 - Client 11: 2

- **Conditions:**
 - No Jam
 - Jam
 - DPT
More OMNET++/INET
Feb 17: Network Layer Threats; Identity Mgmt.