Introduction to Artificial Intelligence

Chapter 2: Solving Problems by Searching (6)
Adversarial Search

Nguyễn Hải Minh, Ph.D
nhminh@fit.hcmus.edu.vn
Outline

1. Games
2. Optimal Decisions in Games
3. α-β Pruning
4. Imperfect, Real-time Decisions
Games vs. Search Problems

- **Unpredictable** opponent
 - specifying a move for every possible opponent reply

- **Competitive environments**:
 - the agents’ goals are in conflict

- **Time limits**
 - unlikely to find goal, must approximate

- **Example of complexity**:
 - Chess: \(b=35 \), \(d=100 \) \(\Rightarrow \) Tree Size: \(\sim 10^{154} \)
 - Go: \(b=1000 \) (!)
Types of Games

<table>
<thead>
<tr>
<th>Perfect information</th>
<th>Deterministic</th>
<th>Imperfect information</th>
<th>Chance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chess, Checkers, Go, Othello</td>
<td>Backgammon Monopoly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge, poker, scrabble nuclear war</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Types of Games
Primary Assumptions

❑ Assume only two players

❑ There is no element of chance
 o No dice thrown, no cards drawn, etc

❑ Both players have complete knowledge of the state of the game
 o Examples are chess, checkers and Go
 o Counter examples: poker

❑ Zero-sum games
 o Each player wins (+1), loses (0), or draws (1/2)

❑ Rational Players
 o Each player always tries to maximize his/her utility
Game Setup (Formulation)

- Two players: **MAX** and **MIN**
- **MAX** moves first and then they take turns until the game is over
 - Winner gets reward, loser gets penalty.
- Games as search:
 - Initial state: how the game is set up at the start
 - e.g. board configuration of chess
 - Player(s): **MAX** or **MIN** is playing
 - Actions(s) – Successor function: list of (move, state) pairs specifying legal moves.
 - Result(s, a) – Transition model: result of a move a on state s
 - Terminal-Test(s): Is the game finished?
 - Utility(s, p) – Utility function: Gives numerical value of terminal states s for a player p
 - e.g. win (+1), lose (0) and draw (1/2) in tic-tac-toe or chess
MAX uses search tree to determine next move.
Chess

- **Complexity:**
 - $b \sim 35$
 - $d \sim 100$
 - search tree is $\sim 10^{154}$ nodes (!!)
 - *completely impractical to search this*

- **Deep Blue:** (May 11, 1997)
 - Kasparov lost a 6-game match against IBM’s Deep Blue (1 win Kasp – 2 wins DB) and 3 ties.

- **In the future,** focus will be to allow computers to **LEARN** to play chess rather than being **TOLD** how it should play
Deep Blue

- Ran on a parallel computer with 30 IBM RS/6000 processors doing alpha-beta search.
- Searched up to 30 billion positions/move, average depth 14 (be able to reach to 40 plies).
- Evaluation function: 8000 features
 - highly specific patterns of pieces (~4000 positions)
 - 700,000 grandmaster games in database
- Working at 200 million positions/sec, even Deep Blue would require 10^{100} years to evaluate all possible games. (The universe is only 10^{10} years old.)
- Now: algorithmic improvements have allowed programs running on standard PCs to win World Computer Chess Championships.
 - Pruning heuristics reduce the effective branching factor to less than 3
Checkers

- **Complexity:**
 - search tree is $\approx 10^{18}$ nodes
 - requires 100k years if solving 106 positions/sec

- **Chinook** (1989-2007)
 - The first computer program to win the world champion title in a competition against humans.
 - 1990: won 2 games in competition with world champion Tinsley (final score: 2-4, 33 draws)
 - 1994: 6 draws

- **Chinook’s search:**
 - Ran on regular PCs, used alpha-beta search.
 - Play perfectly using alpha-beta search combining with a database of 39 trillion endgame positions.
GO

Complexity:
- Board: 19x19 → Branching factor: 361, average depth ~ 200
- ~ 10^{174} possible board configuration.
- Control of territory is unpredictable until the endgame.

AlphaGo (2016) by Google
- Beat 9-dan professional Lee Sedol (4-1)
- Machine learning + Monte Carlo search guided by a “value network” and a “policy network” (implemented using deep neural network technology)
- Learn from human + Learn by itself (self-play games)

1 million trillion trillion trillion more configurations than chess!
Optimal Decision in Games

- In normal search problem:
 - Optimal solution is a sequence of action leading to a goal state

- In games:
 - A search path that guarantee win for a player
 - The optimal strategy can be determined from the minimax value of each node

\[
\text{MINIMAX}(s) = \begin{cases}
\text{UTILITY}(s) & \text{if TERMINAL-TEST}(s) \\
\max_{a \in \text{Actions}(s)} \min_{a' \in \text{Actions}(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if PLAYER}(s) = \text{MAX} \\
\min_{a \in \text{Actions}(s)} \max_{a' \in \text{Actions}(s)} \text{MINIMAX}(\text{RESULT}(s, a)) & \text{if PLAYER}(s) = \text{MIN}
\end{cases}
\]
A two-ply game tree

MAX

MIN

MAX best move

MIN best move

Utility values for MAX

06/05/2018

Nguyễn Hải Minh @ FIT
Minimax Algorithm

- John von Neumann devised a search technique, called **Minimax**

- You play against an opponent
 - Your objectives are in direct opposition
 - MAX tries to maximize his play while trying to minimize his opponent’s (MIN’s) play

- To implement Minimax, you need to know how good (or bad) your position is.
 - That is called the **Utility function**
Minimax Algorithm

- Definition of optimal play for MAX assumes MIN plays optimally:
 - maximizes worst-case outcome for MAX
- But if MIN does not play optimally, MAX will do even better
- Minimax uses depth first search to traverse the game tree
 - Complete depth-first exploration of the game tree
Minimax algorithm

\[
\text{function Minimax-Decision}(state) \text{ returns an action} \\
\text{\quad return } \arg \max_{a \in \text{Actions}(s)} \text{Min-Value(RESULT}(state, a))
\]

\[
\begin{align*}
\text{function Max-Value}(state) & \text{ returns a utility value} \\
\text{\quad if Terminal-Test}(state) \text{ then return Utility}(state) \\
\text{\quad \quad } v \leftarrow -\infty \\
\text{\quad for each } a \text{ in Actions}(state) \text{ do} \\
\text{\quad \quad } v \leftarrow \max(v, \text{Min-Value(RESULT}(s, a))) \\
\text{\quad return } v
\end{align*}
\]

\[
\begin{align*}
\text{function Min-Value}(state) & \text{ returns a utility value} \\
\text{\quad if Terminal-Test}(state) \text{ then return Utility}(state) \\
\text{\quad \quad } v \leftarrow \infty \\
\text{\quad for each } a \text{ in Actions}(state) \text{ do} \\
\text{\quad \quad } v \leftarrow \min(v, \text{Max-Value(RESULT}(s, a))) \\
\text{\quad return } v
\end{align*}
\]
Properties of minimax

- **Complete?**
 - Yes (if tree is finite)

- **Optimal?**
 - Yes (against an optimal opponent)

- **Time complexity?**
 - $O(b^m)$

- **Space complexity?**
 - $O(bm)$ (depth-first exploration)

For chess, $b \approx 35$, $m \approx 100$ for "reasonable" games → exact solution completely infeasible
QUIZ

Calculate the utility value for the remaining nodes. Which node should MAX and MIN choose?
Problem with Minimax Search

❑ Number of game states is *exponential* in the number of moves.
 o Solution: Do not examine every node
 → **pruning**: Remove branches that do not influence final decision

❑ Bounded lookahead
 o Limit depth for each search
 o This is what chess players do: look ahead for a few moves and see what looks best
\(\alpha-\beta\) pruning

- Idea:
 - If a move A is determined to be worse than move B that has already been examined and discarded, then examining move A once again is **pointless**.
 - \(\alpha\): best already explored option (utility value) along path to the root for MAX
 - \(\beta\): best already explored option (utility value) along path to the root for MIN
function `ALPHA-BETA-SEARCH(state) returns` an action

\[v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty) \]

return the action in ACTIONS(state) with value \(v \)

function `MAX-VALUE(state, \alpha, \beta) returns` a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

\[v \leftarrow -\infty \]

for each \(a \) in ACTIONS(state) do

\[v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(ext{RESULT}(s, a), \alpha, \beta)) \]

if \(v \geq \beta \) then return \(v \)

\[\alpha \leftarrow \text{MAX}(\alpha, v) \]

return \(v \)

function `MIN-VALUE(state, \alpha, \beta) returns` a utility value

if TERMINAL-TEST(state) then return UTILITY(state)

\[v \leftarrow +\infty \]

for each \(a \) in ACTIONS(state) do

\[v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(ext{RESULT}(s, a), \alpha, \beta)) \]

if \(v \leq \alpha \) then return \(v \)

\[\beta \leftarrow \text{MIN}(\beta, v) \]

return \(v \)
α-β pruning example

Value range of Minimax value for MAX

Value range of Minimax value for MIN

(a)
\(\alpha-\beta \) pruning example

(b)

[\(-\infty, +\infty\)]

[\(-\infty, 3\)]

3

12
\(\alpha - \beta \) pruning example
α-β pruning example
α-β pruning example

Prune these nodes! WHY?
Properties of α-β pruning

- Pruning does not affect final result
 - Best case: Pruning can reduce tree size
 - Worst case: as good as Minimax algorithm

- Good move ordering improves effectiveness of pruning

- With "perfect ordering," time complexity = $O(b^{m/2})$
 - doubles depth of search

- In chess, Deep Blue achieved reduced the depth from 38 to 6
Why is it called α-β?

- α is the value of the best (i.e., highest-value) choice found so far at any choice point along the path for max
- If v is worse than α, max will avoid it → prune that branch
- Define β similarly for min
QUIZ

Calculate the utility value for the remaining nodes. Which node(s) should be pruned?
Imperfect, Real-time Decisions

Both Minimax and α-β pruning search all the way to terminal states

- This depth is usually not practical because moves must be made in a reasonable amount of time (~ minutes)

Standard approach:

- cutoff test:
 - e.g., depth limit

- evaluation function
 = estimated desirability of position (win, lose, tie?)
Evaluation functions

- For chess, typically linear weighted sum of features

\[
Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)
\]

Where \(w_i \): the value of the \(i^{\text{th}} \) chess piece
- e.g., \(w_1 = 9 \) with \(f_1(s) = (\#\text{white queen}) - (\#\text{black queen}), \) etc.
- e.g. \(q = \#\text{queens}, \) \(r = \#\text{rooks}, \) \(n = \#\text{knights}, \) \(b = \#\text{bishops}, \) \(p=\#\text{pawns} \)

\[\rightarrow Eval(s) = 9q + 5r + 3b + 3n + p\]
Cutting off search

- **Minimax Cutoff** is identical to **MinimaxValue** except
 1. Terminal? is replaced by Cutoff?
 2. Utility is replaced by Eval

- Does it work in practice?
 - \(b^m = 10^6, b=35 \rightarrow m=4 \)
 - 4-ply lookahead is a hopeless chess player!
 - 4-ply \(\approx \) human novice
 - 8-ply \(\approx \) typical PC, human master
 - 12-ply \(\approx \) Deep Blue, Kasparov
Summary

❑ Games are fun to work on!
❑ They illustrate several important points about AI
 o perfection is unattainable → must approximate
 o good idea to think about what to think about
More reading (textbook, chapter 5.5—5.7)

- Search vs lookup
- Stochastic games
- Partially observable games
- State-of-the-art game programs
Next week

❑ Wednesday (Jun 13):
 o Midterm Examination
 o Close-book
 o 45 mins

❑ Lecture:
 o Constraint Satisfaction Problems