Midterm Exam

ARTIFICIAL INTELLIGENCE

Class: KSTN 2003
Questions: 3 – Total mark: 10 – Time: 60 minutes
Open book

Question 1 (4 marks):
Consider the water jug problem: “You are given two jugs, a 4-litre one and a 3-litre one. Neither has any measuring markers on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 litres of water into one of the two jugs”.

This problem could be solved using a modified Simple Hill Climbing method as follows:
- A goal state is one where the amount of water in either jug is exactly 2. So one can apply the heuristic function \( f((x, y)) = |x - 2| + |y - 2| \), where \( x \) and \( y \) represent the amounts of water in the 4-litre and the 3-litre jugs, respectively. The idea is that the closer to 2 the amount of water in either of the two jugs is, the closer to the goal it would be.
- Keep moving for a few steps when getting in the plateau situation.

Illustrate how the method works via search tree expansion.

Question 2 (4 marks):
Represent the following sentences in predicate logic, using your defined vocabulary:
- Every student who takes AI passes it.
- No student likes a boring course.
- There was a student who took Philosophy but failed it.
- All students like courses instructed by a PhD holder.
- The birthplace of a person is where he/she was born.
- A person whose mother or father is a Vietnamese citizen is also Vietnamese citizen.
- A Vietnamese citizen cannot hold another citizenship.
- No one working for the United Nations can hold a citizenship.

Question 3 (2 marks):
Express the meanings of the following predicate logic formulas in English naturally:
- \( \forall x: \text{student}(x) \rightarrow \exists y: \text{course}(y) \land \neg \text{likes}(x, y) \).
- \( \forall x \forall y: \text{student}(x) \land \text{course}(y) \land \text{takes}(x, y) \rightarrow \text{interesting}(y) \lor \text{easy}(y) \).

where \( \text{student}(x) \equiv x \text{ is a student} \), \( \text{course}(y) \equiv y \text{ is a course} \), \( \text{likes}(x, y) \equiv x \text{ likes } y \), \( \text{takes}(x, y) \equiv x \text{ takes } y \), \( \text{interesting}(y) \equiv y \text{ is interesting} \), \( \text{easy}(y) \equiv y \text{ is easy} \).

------- End -------