Chapter 6: Multiway Trees

• Tree whose outdegree is not restricted to 2 while retaining the general properties of binary search trees.
M-Way Search Trees

- Each node has \(m - 1 \) data entries and \(m \) subtree pointers.

- The key values in a subtree such that:
 - \(\geq \) the key of the left data entry
 - \(< \) the key of the right data entry.

```
K1
K1 <= keys < K2
K2 <= keys < K3
K3 <= keys
```

Cao Hoang Tru
CSE Faculty - HCMUT

17 November 2008
M-Way Search Trees
M-Way Node Structure

entry

- key <key type>
- data <data type>
- rightPtr <pointer>

end entry

node

- firstPtr <pointer>
- numEntries <integer>
- entries <array[1 .. m-1] of entry>

end node
B-Trees

• M-way trees are unbalanced.

B-Trees

• A B-tree is an m-way tree with the following additional properties (m >= 3):
 – The root is either a leaf or has at least 2 subtrees.
 – All other nodes have at least \(\lceil m/2 \rceil - 1 \) entries.
 – All leaf nodes are at the same level.
B-Trees

\[m = 5 \]

Cao Hoang Tru
CSE Faculty - HCMUT

17 November 2008
B-Tree Insertion

• Insert the new entry into a leaf node.

• If the leaf node is overflow, then split it and insert its median entry into its parent.
B-Tree Insertion

Insert 78, 21, 14, 11

Insert 97

Insert 85, 74, 63

Insert 45, 42, 57
B-Tree Insertion

Insert 20, 16, 19

Insert 52, 30, 21
B-Tree Insertion

Algorithm BTreeInsert (val root <pointer>, val data <record>)

Inserts data into B-tree. Equal keys placed on right branch.

Pre root is a pointer to the B-tree. May be null.
Post data inserted.
Return pointer to B-tree root.

1 taller = insertNode(root, data, upEntry)
2 if (taller true)
 Tree has grown. Create new root.
 1 allocate (newPtr)
 2 newPtr -> entries[1] = upEntry
 3 newPtr -> firstPtr = root
 4 newPtr -> numEntries = 1
 5 root = newPtr
3 return root

End BTreeInsert
B-Tree Insertion

Algorithm

insertNode (val root <pointer>, val data <record>,
ref upEntry <entry>)

Recursively searches tree to locate leaf for data. If node overflow, inserts median key's data into parent.

Pre

root is a pointer to tree or subtree. May be null.

Post

data inserted.

upEntry is overflow entry to be inserted into parent.

Return

tree taller <boolean>.

1 if (root null)
1 upEntry.data = data
2 upEntry.rightPtr = null
3 taller = true
2 else
B-Tree Insertion

else

 entryNdx = searchNode (root, data.key)
 if (entryNdx > 0)
 subTree = root -> entries[entryNdx].rightPtr
 else
 subTree = root -> firstPtr
 taller = insertNode(subTree, data, upEntry)
 if (taller)
 if (node full)
 splitNode (root, entryNdx, upEntry)
 taller = true
 else
 insertEntry (root, entryNdx, upEntry)
 taller = false
 root -> numEntries = root -> numEntries + 1

return taller

End insertNode
B-Tree Insertion

Algorithm searchNode (val nodePtr <pointer>, val target <key>)

Search B-tree node for data entry containing key \(\leq \) target.

Pre
- nodePtr is pointer to non-null node.
- target is key to be located.

Return
- index to entry with key \(\leq \) target.
 - 0 if key < first entry in node
 - 1 if \(\text{target < nodePtr} \rightarrow \text{entry[1].data.key} \)
 - walker = 0
 - else
 - walker = nodePtr \rightarrow \text{numEntries}
 - loop (target < nodePtr \rightarrow \text{entries[walker].data.key})
 - walker = walker - 1
 - return walker

End searchNode
B-Tree Insertion

Algorithm
`splitNode(val node <pointer>, val entryNdx <index>, ref upEntry <entry>)`

Node has overflowed. Split node. No duplicate keys allowed.

Pre
- `node` is pointer to node that overflowed.
- `entryNdx` contains index location of parent.
- `upEntry` contains entry being inserted into split node.

Post
- `upEntry` now contains entry to be inserted into parent.

1. `minEntries = minimum number of entries`
2. `allocate(rightPtr)`
3. **Build right subtree node**
 - if (`entryNdx <= minEntries`)
 - `fromNdx = minEntries + 1`
4. else
B-Tree Insertion

4 else
 1 fromNdx = minEntries + 2
5 toNdx = 1
6 rightPtr -> numEntries = node -> numEntries - fromNdx + 1
7 loop (fromNdx <= node -> numEntries)
 1 rightPtr -> entries[toNdx] = node -> entries[fromNdx]
 2 fromNdx = fromNdx + 1
 3 toNdx = toNdx + 1
8 node -> numEntries = node -> numEntries - rightPtr -> numEntries
9 if (entryNdx <= minEntries)
 1 insertEntry (node, entryNdx, upEntry)
10 else
B-Tree Insertion

else

1. insertEntry (rightPtr, entryNdx – minEntries, upEntry)
2. node -> numEntries = node -> numEntries – 1
3. rightPtr -> numEntries = rightPtr -> numEntries + 1

Build entry for parent

medianNdx = minEntries + 1
upEntry.data = node -> entries[medianNdx].data
upEntry.rightPtr = rightPtr
rightPtr -> firstPtr = node -> entries[medianNdx]. rightPtr
return

End splitNode
B-Tree Insertion

Algorithm \(\text{insertEntry (val node <pointer>, val entryNdx <index>, val newEntry <entry>)} \)

Inserts one entry into a node by shifting nodes to make room.

Pre \(\text{node} \) is pointer to node to contain data.
\(\text{newEntry} \) contains data to be inserted.
\(\text{entryNdx} \) is index to location for new data.

Post data have been inserted in sequence.

1. \(\text{shifter} = \text{node} \rightarrow \text{numEntries} + 1 \)
2. loop (\(\text{shifter} > \text{entryNdx} + 1 \))
 1. \(\text{node} \rightarrow \text{entries}[\text{shifter}] = \text{node} \rightarrow \text{entries}[\text{shifter} - 1] \)
 2. \(\text{shifter} = \text{shifter} - 1 \)
3. \(\text{node} \rightarrow \text{entries}[\text{shifter}] = \text{newEntry} \)
4. \(\text{node} \rightarrow \text{numEntries} = \text{node} \rightarrow \text{numEntries} + 1 \)
5. return

End \(\text{insertEntry} \)
B-Tree Deletion

- It must take place at a leaf node.
- If the data to be deleted are not in a leaf node, then replace that entry by the largest entry on its left subtree.
B-Tree Deletion

Delete 78

Delete 63
B-Tree Deletion

Delete 85

Delete 21

underflow
(node has fewer than the min num of entries)
Reflow

• For each node to have sufficient number of entries:
 - **Balance**: shift data among nodes.
 - **Combine**: join data from nodes.
Balance

Borrow from right

Original node

Rotate parent data down

Rotate data to parent

Shift entries left
Balance

Borrow from left

Original node

Shift entries right

Rotate parent data down

Rotate data up
Combine

1. After underflow

2. After moving root to subtree

3. After moving right entries

4. After shifting root
B-Tree Traversal
B-Tree Traversal

Algorithm BTreeTraversal (val root <pointer>)

Processes tree using inorder traversal

Pre root is a pointer to B-tree
Post Every entry has been processed in order

1 scanCount = 0
2 ptr = root -> firstPtr
3 loop (scanCount <= root -> numEntries)
 1 if (ptr not null)
 1 BTreeTraversal (ptr)
 2 scanCount = scanCount + 1
 3 if (scanCount <= root -> numEntries)
 1 process (root -> entries[scanCount].data)
 2 ptr = root -> entries[scanCount].rightPtr
4 return

End BTreeTraversal

Cao Hoang Tru
CSE Faculty - HCMUT

17 November 2008
B-Tree Search

Algorithm

BTreeSearch (val root <pointer>, val target <key>,
 ref node <pointer>, ref entryNo <index>)

Recursively searches a B-tree for the target key

Pre

root is a pointer to a tree or subtree

target is the data to be located

Post

if found --

node is pointer to located node
 entryNo is entry within node

if not found --

node is null and entryNo is zero

Return

found <boolean>
B-Tree Search

1. if (empty tree)
 1. node = null
 2. entryNo = 0
 3. found = false
2. else
 1. if (target < first entry)
 1. return BTreeSearch (root -> firstPtr, target, node, entryNo)
 2. else
 1. entryNo = root -> numEntries
 2. loop (target < root -> entries[entryNo].data.key)
 1. entryNo = entryNo - 1
 3. if (target = root -> entries[entryNo].data.key)
 1. found = true
 2. node = root
 4. else
 1. return BTreeSearch (root -> entries[entryNo].rightPtr, target, node, entryNo)
4. return found

End BTreeTraversal
Cao Hoang Tru
CSE Faculty - HCMUT

17 November 2008
B-Tree Variations

• **B*Tree**: the minimum number of (used) entries is two thirds.

• **B+Tree**:
 - Each data entry must be represented at the leaf level.
 - Each leaf node has one additional pointer to move to the next leaf node.
Reading

• Pseudo code of algorithms for B-Tree Insertion