TUTORIAL SESSION 6
GRAPH and SORTING

Question 1.

Given a directed graph as illustrated in Figure 1, use the Dijkstra algorithm to find shortest paths from \(d \) to all vertices of the graph. Let \(d(x) \) be the shortest distance currently found from \(d \) to vertex \(x \). Give the values \(d(x) \) for each iteration when applying the algorithms by filling the following Table 1.

![Figure 1.](https://fb.com/tailieudientucntt)

<table>
<thead>
<tr>
<th>processed vertex</th>
<th>(d(a))</th>
<th>(d(b))</th>
<th>(d(c))</th>
<th>(d(d))</th>
<th>(d(e))</th>
<th>(d(f))</th>
<th>(d(g))</th>
<th>(d(h))</th>
<th>(d(i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>(\infty)</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>2</td>
</tr>
<tr>
<td>(i)</td>
<td>(\infty)</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
| \(b \) | ... | ... | ...
| ... | ...

Question 2. Use the Prim’s algorithm to find a spanning minimum tree for the graph given in Figure 2.
Question 3. In which case, the following sorting algorithm is fastest/slowest and what is the complexity in that case? Explain.

a. insertion sort
b. selection sort
c. bubble sort
d. merge sort

Question 4.

For a given “nearly” sorted list, which sorting algorithm (insertion, selection, merge sort) should be used? Why?

Question 5.

Given a list = \{13, 27, 8, 3, 21, 17, 28, 32, 91, 72, 23, 35\}, show the sorting process step-by-step of the following algorithm. What are the number of comparisons and number of moving elements (an exchange 2 elements is considered as 3 moves). Which is the best algorithm in this case?

a. insertion sort
b. selection sort
c. heap sort
d. bubble sort
e. merge sort
f. quick sort

Question 6. Repeat question 3 for the following list: \{13, 3, 8, 21, 27, 23, 17, 28, 32, 35, 91, 72\}.

1 The pivot is chosen as described in the slides