Intrusion Detection System

Click to add Text

CuuDuongThanCong.com

Cuu Duong Than Cong . com

https://fb.com/tailieu/ncnt
Intruders

- significant issue hostile/unwanted trespass
 - from benign to serious

- user trespass
 - unauthorized logon, privilege abuse

- software trespass
 - virus, worm, or trojan horse

- classes of intruders:
 - masquerader, misfeasor, clandestine user
Examples of Intrusion

- remote root compromise
- web server defacement
- guessing / cracking passwords
- copying viewing sensitive data / databases
- running a packet sniffer
- distributing pirated software
- using an unsecured modem to access net
- impersonating a user to reset password
- using an unattended workstation
Security Intrusion & Detection

Security Intrusion

a security event, or combination of multiple security events, that constitutes a security incident in which an intruder gains, or attempts to gain, access to a system (or system resource) without having authorization to do so.

Intrusion Detection

a security service that monitors and analyzes system events for the purpose of finding, and providing real-time or near real-time warning of attempts to access system resources in an unauthorized manner.
Intrusion Techniques

- objective to gain access or increase privileges
- initial attacks often exploit system or software vulnerabilities to execute code to get backdoor
 - e.g. buffer overflow
- or to gain protected information
 - e.g. password guessing or acquisition
Hackers

- motivated by thrill of access and status
 - hacking community a strong meritocracy
 - status is determined by level of competence
- benign intruders might be tolerable
 - do consume resources and may slow performance
 - can’t know in advance whether benign or malign
- IDS / IPS / VPNs can help counter
- awareness led to establishment of CERTs
 - collect / disseminate vulnerability info / responses
Hacker Behavior Example

1. select target using IP lookup tools
2. map network for accessible services
3. identify potentially vulnerable services
4. brute force (guess) passwords
5. install remote administration tool
6. wait for admin to log on and capture password
7. use password to access remainder of network
Criminal Enterprise

- organized groups of hackers now a threat
 - corporation / government / loosely affiliated gangs
 - typically young
 - often Eastern European or Russian hackers
 - common target credit cards on e-commerce server
- criminal hackers usually have specific targets
- once penetrated act quickly and get out
- IDS / IPS help but less effective
- sensitive data needs strong protection
Criminal Enterprise Behavior

1. act quickly and precisely to make their activities harder to detect
2. exploit perimeter via vulnerable ports
3. use trojan horses (hidden software) to leave back doors for re-entry
4. use sniffers to capture passwords
5. do not stick around until noticed
6. make few or no mistakes.
Insider Attacks

- among most difficult to detect and prevent
- employees have access & systems knowledge
- may be motivated by revenge / entitlement
 - when employment terminated
 - taking customer data when move to competitor
- IDS / IPS may help but also need:
 - least privilege, monitor logs, strong authentication, termination process to block access & mirror data
Insider Behavior Example

1. create network accounts for themselves and their friends
2. access accounts and applications they wouldn't normally use for their daily jobs
3. e-mail former and prospective employers
4. conduct furtive instant-messaging chats
5. visit web sites that cater to disgruntled employees, such as f'dcompany.com
6. perform large downloads and file copying
7. access the network during off hours.
Intrusion Detection Systems

- classify intrusion detection systems (IDSs) as:
 - Host-based IDS: monitor single host activity
 - Network-based IDS: monitor network traffic

- logical components:
 - sensors - collect data
 - analyzers - determine if intrusion has occurred
 - user interface - manage / direct / view IDS
IDS Principles

- assume intruder behavior differs from legitimate users
 - expect overlap as shown
 - observe deviations from past history
 - problems of:
 - false positives
 - false negatives
 - must compromise
IDS Requirements

- run continually
- be fault tolerant
- resist subversion
- impose a minimal overhead on system
- configured according to system security policies
- adapt to changes in systems and users
- scale to monitor large numbers of systems
- provide graceful degradation of service
- allow dynamic reconfiguration
Host-Based IDS

➤ specialized software to monitor system activity to detect suspicious behavior
 • primary purpose is to detect intrusions, log suspicious events, and send alerts
 • can detect both external and internal intrusions

➤ two approaches, often used in combination:
 • anomaly detection - defines normal/expected behavior
 • threshold detection
 • profile based
 • signature detection - defines proper behavior
Audit Records

- a fundamental tool for intrusion detection
- two variants:
 - native audit records - provided by O/S
 - always available but may not be optimum
 - detection-specific audit records - IDS specific
 - additional overhead but specific to IDS task
 - often log individual elementary actions
 - e.g. may contain fields for: subject, action, object, exception-condition, resource-usage, time-stamp
Example of Audit

- Consider `copy.exe game.exe <system>/game.exe`
- Several records may be generated for a single command
 1. Execute `copy.exe`
 2. Read `game.exe`
 3. Write `<system>/game.exe`

CuuDuongThanCong.com
https://fb.com/tailieudientucntt
Anomaly Detection

- **threshold detection**
 - checks excessive event occurrences over time
 - alone a crude and ineffective intruder detector
 - must determine both thresholds and time intervals

- **profile based**
 - characterize past behavior of users / groups
 - then detect significant deviations
 - based on analysis of audit records
 - gather metrics: counter, guage, interval timer, resource utilization
 - analyze: mean and standard deviation, multivariate, markov process, time series, operational model
Examples of Anomaly

Table 8.2 Measures That May Be Used for Intrusion Detection

<table>
<thead>
<tr>
<th>Measure</th>
<th>Model</th>
<th>Type of Intrusion Detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Login frequency by day and time</td>
<td>Mean and standard deviation</td>
<td>Intruders may be likely to login during off hours</td>
</tr>
<tr>
<td>Frequency of login at different locations</td>
<td>Mean and standard deviation</td>
<td>Intruders may log in from a location that a particular user rarely or never uses</td>
</tr>
<tr>
<td>Time since last login</td>
<td>Operational</td>
<td>Break-in on a “dead” account</td>
</tr>
<tr>
<td>Elapsed time per session</td>
<td>Mean and standard deviation</td>
<td>Significant deviations might indicate masquerader</td>
</tr>
<tr>
<td>Quantity of output to location</td>
<td>Mean and standard deviation</td>
<td>Excessive amounts of data transferred to remote locations could signify leakage of sensitive data</td>
</tr>
<tr>
<td>Session resource utilization</td>
<td>Mean and standard deviation</td>
<td>Unusual processor or I/O levels could signal an intruder</td>
</tr>
<tr>
<td>Password failures at login</td>
<td>Operational</td>
<td>Attempted break-in by password guessing</td>
</tr>
<tr>
<td>Failures to login from specified terminals</td>
<td>Operational</td>
<td>Attempted break-in</td>
</tr>
</tbody>
</table>

CuuduongThanCong.com

https://fb.com/tailieudientucntt
Examples of Anomaly

<table>
<thead>
<tr>
<th>Command or Program Execution Activity</th>
<th>Execution frequency</th>
<th>Mean and standard deviation</th>
<th>May detect intruders who are likely to use different commands or a successful penetration by a legitimate user who has gained access to privileged commands.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Program resource utilization</td>
<td>Mean and standard deviation</td>
<td>An abnormal value might suggest injection of a virus or Trojan horse, which performs side effects that increase I/O or processor utilization.</td>
</tr>
<tr>
<td></td>
<td>Execution denials</td>
<td>Operational model</td>
<td>May detect penetration attempt by individual user who seeks higher privileges.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File Access Activity</th>
<th>Read, write, create, delete frequency</th>
<th>Mean and standard deviation</th>
<th>Abnormalities for read and write access for individual users may signify masquerading or browsing.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Records read, written</td>
<td>Mean and standard deviation</td>
<td>Abnormality could signify an attempt to obtain sensitive data by inference and aggregation.</td>
</tr>
<tr>
<td></td>
<td>Failure count for read, write, create, delete</td>
<td>Operational</td>
<td>May detect users who persistently attempt to access unauthorized files.</td>
</tr>
</tbody>
</table>

CuuDuongThanCong.com

https://fb.com/tailieudientucntt
Signature Detection

- observe events on system and applying a set of rules to decide if intruder

- approaches:
 - rule-based anomaly detection
 - analyze historical audit records for expected behavior, then match with current behavior
 - rule-based penetration identification
 - rules identify known penetrations / weaknesses
 - often by analyzing attack scripts from Internet
 - supplemented with rules from security experts
Example of Signatures

- Users should not read files in other users’ personal directories
- Users must not write other users’ files
- Users who log in after hours often access the same files they used earlier
- Users do not generally open disk devices but rely on higher-level operating system utilities
- Users should not be logged in more than once to the system
- Users do not make copies of system programs
Distributed Host-Based IDS
Distributed Host-Based IDS

Diagram:

- OS audit information
- Filter
- Host Audit Record
- Logic
- Central Manager
- Alerts
- Query/response
- Templates
 - Notable activity
 - Signatures
 - Noteworthy sessions
- Agent Protocol Machine
 - Modifications
Network-Based IDS

- network-based IDS (NIDS)
 - monitor traffic at selected points on a network
 - in (near) real time to detect intrusion patterns
 - may examine network, transport and/or application level protocol activity directed toward systems
- comprises a number of sensors
 - inline (possibly as part of other net device)
 - passive (monitors copy of traffic)
NIDS Sensor Deployment
Intrusion Detection Techniques

- **signature detection**
 - at application, transport, network layers;
 unexpected application services, policy violations

- **anomaly detection**
 - of denial of service attacks, scanning, worms

- when potential violation detected sensor sends an alert and logs information
 - used by analysis module to refine intrusion detection parameters and algorithms
 - by security admin to improve protection

CuuDuongThan Cong.com
https://fb.com/tai lieu dien tu cacnt
Distributed Adaptive Intrusion Detection

PEP = policy enforcement point
DDI = distributed detection and inference
Intrusion Detection Exchange Format
Honeypots

- are decoy systems
 - filled with fabricated info
 - instrumented with monitors / event loggers
 - divert and hold attacker to collect activity info
 - without exposing production systems

- initially were single systems
- more recently are/emulate entire networks
Honeypot Deployment
SNORT

- lightweight IDS
 - real-time packet capture and rule analysis
 - passive or inline
SNORT Rules

- use a simple, flexible rule definition language
- with fixed header and zero or more options
- header includes: action, protocol, source IP, source port, direction, dest IP, dest port
- many options
- example rule to detect TCP SYN-FIN attack:

```
Alert tcp $EXTERNAL_NET any -> $HOME_NET any \n(msg: "SCAN SYN FIN"; flags: SF, 12; \nreference: arachnids, 198; classtype: attempted-recon;)
```
Summary

- introduced intruders & intrusion detection
 - hackers, criminals, insiders
- intrusion detection approaches
 - host-based (single and distributed)
 - network
 - distributed adaptive
 - exchange format
- honeypots
- SNORT example