The **z-transform** of the discrete-time system $x(n)$ is defined as the power series

$$x(z) \equiv \sum_{n=-\infty}^{\infty} x(n)z^{-n} \quad (3.1.1)$$

Where z - complex variable.

It sometimes called **the direct z-transform**.

The inverse procedure is called the **inverse z-transform**.

$$X(z) \equiv Z \{x(n)\} \quad (3.1.2)$$

$$x(n) \leftrightarrow X(z) \quad (3.1.3)$$

The **region of convergence** (ROC) of $X(z)$ is the set of all values z for which $X(z)$ attains a finite value.
3.1 The z-transform

Let us express the complex variable \(z \) in polar form as

\[z = r \, e^{j \theta} \quad \text{(3.1.4)} \]

\(r = |z| \) and \(\theta = \triangle z \), Then

\[x(z)|_{z=r e^{j \theta}} = \sum_{n=-\infty}^{\infty} x(n) r^{-n} e^{-j \theta n} \]

In the ROC of \(X(z) \), \(|x(z)| < \infty \), then

\[|X(z)| \leq \sum_{n=-\infty}^{\infty} |x(n) r^{-n}| \quad \text{(3.1.5)} \]

\[|X(z)| \leq \sum_{n=1}^{\infty} |x(-n) r^{n}| + \sum_{n=0}^{\infty} \left| \frac{x(n)}{r^{n}} \right| \quad \text{(3.1.6)} \]
3.1.1 The direct z-transform

Figure 3.1 Region of convergence for $X(z)$ and its corresponding causal and anticausal components.

ROC for the first sum consists of all points in a circle of some radius $r_1 < \infty$.

\[
\sum_{n=1}^{\infty} |x(-n)r^n|
\]
3.1.1 The direct z-transform

ROC for the second sum consists of all points outside a circle of radius $r > r_2$.

Region of convergence for

$$\sum_{n=0}^{\infty} \left| \frac{x(n)}{r^n} \right|$$
3.1.1 The direct z-transform

ROC of $X(z)$ is generally specified as the annular region in the z-plane, $r_2 < r < r_1$,

$$|X(z)| \quad r_2 < r < r_1$$
3.1.1 The direct z-transform

A discrete–time $x(n)$ is **uniquely** determined by its z-transform $x(z)$ and the region of convergence of $x(z)$.

Table 3.1 Characteristic Families of signal with their corresponding ROC.

<table>
<thead>
<tr>
<th>Signal</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite-Duration Signal</td>
<td></td>
</tr>
<tr>
<td>Causal</td>
<td>Entire z-plane except $z=0$</td>
</tr>
</tbody>
</table>
3.1.1 The direct z-transform

Anticausal

Entire z-plane except $z = \infty$

Two-sided

Entire z-plane except $z = 0$ and $z = \infty$
3.1.1 The direct z-transform

Infinite – Duration Signals

Causal

\[|z| > r_2 \]

Anticausal

\[|z| < r_1 \]

Two-sided

\[r_2 < |z| < r_1 \]
3.1.1 The direct z-transform

These types of signal are called right-sided, left-sided, and finite-duration two-sided, signals.

If there is a ROC for an infinite duration two-sided signal, it is a ring (annular region) in the z-plane.

The one-sided or unilateral z-transform given by

$$X^+(z) = \sum_{n=0}^{\infty} x(n)z^{-n} \quad (3.1.11)$$
3.1.2 The Inverse z-Transform

The procedure for transform from the z-domain to the time domain is called the inversion z-transform.

Cauchy integral theorem.

We have

$$X(z) = \sum_{k=-\infty}^{\infty} x(k)z^{-k} \quad (3.1.12)$$

then

$$\int_c X(z)z^{n-1}dz = \int_c \sum_{k=-\infty}^{\infty} x(k)z^{n-1-k}dz \quad (3.1.13)$$

Where C the closed contour in the ROC of $X(z)$.
3.1.2 The Inverse z-Transform

or

\[x(n) = \frac{1}{2\pi j} \oint_C X(z)z^{n-1} \, dz \quad (3.1.16) \]

Figure 3.1.5 Contour C for integral in (3.1.13)
3.2 Properties of the z–Transform

+ **Linearity**

 if \(x_1(n) \leftrightarrow X_1(z) \) and \(x_2(n) \leftrightarrow X_2(z) \)

 then

 \[
 x(n) = a_1 x_1(n) + a_2 x_2(n) \quad \leftrightarrow \quad X(z) = a_1 X_1(z) + a_2 X_2(z)
 \]

\[
(3.2.1)
\]

+ **Time shifting**

 if \(x(n) \leftrightarrow X(z) \)

 then

 \[
 x(n-k) \leftrightarrow z^{-k} X(z)
 \]

\[
(3.2.5)
\]

+ **Scaling in the z-domain**

 If \(x(n) \leftrightarrow X(z), \quad \text{ROC: } r_1 < |z| < r_2 \)

 then \[
 a^n x(n) \leftrightarrow X(a^{-1}z), \quad \text{ROC: } |a|r_1 < |z| < |a|r_2
 \]

\[
(3.2.9)
\]

for any constant \(a \), real or complex.
3.2 Properties of the z–Transform

+ **Time reversal**

 if \(x(n) \leftrightarrow X(z) \), \(\text{ROC: } r_1 < |z| < r_2 \)

 then \(x(-n) \leftrightarrow X(z^{-1}) \), \(\text{ROC: } 1/r_2 < |z| < 1/r_1 \) (3.2.12)

+ **Differentiation in the z-domain**

 if \(x(n) \leftrightarrow X(z) \)

 then \(nx(n) \leftrightarrow -z \frac{dX(z)}{dz} \) (3.2.14)

+ **Convolution of two sequences**

 if \(x_1(n) \leftrightarrow X_1(z) \), \(x_2(n) \leftrightarrow X_2(z) \),

 then \(x(n) = x_1(n) \ast x_2(n) \leftrightarrow X(z) = X_1(z) X_2(z) \) (3.2.17)
3.2 Properties of the z–Transform

+ Correlation of two sequences

If \(x_1(n) \leftrightarrow X_1(z) \), and \(x_2(n) \leftrightarrow X_2(z) \) then

\[
r_{x1x2}(l) = \sum_{n=-\infty}^{\infty} x_1(n)x_2(n-l) \leftrightarrow R_{x1x2}(z) = X_1(z)X_2(z^{-1})
\]

(3.2.18)

+ Multiplication of two sequences

If \(x_1(n) \leftrightarrow X_1(z) \), \(x_2(n) \leftrightarrow X_2(z) \) then

\[
x(n) = x_1(n)x_2(n) \leftrightarrow X(z) = \frac{1}{2\pi j} \oint_C X_1(v)X_2\left(\frac{z}{v}\right) v^{-1} dv
\]

(3.2.19)

C – closed contour that encloses the origin and lies within the region of convergence common to both \(X_1(v) \) and \(X_2(1/v) \)
3.2 Properties of the z–Transform

+ Parseval’s relation

If \(x_1(n)\) and \(x_2(n)\) are complex-valued sequences, then

\[
\sum_{n=-\infty}^{\infty} x_1(n)x_2^*(n) = \frac{1}{2\pi j} \oint_{c} X_1(v)X_2^*\left(\frac{1}{v^*}\right)v^{-1}dv \quad (3.2.22)
\]

provided that \(r_{1l}r_{2l} < 1 < r_{1u}r_{2u}\), where \(r_{1l} < |z| < r_{1u}\) and \(r_{2l} < |z| < r_{2u}\) are the ROC of \(X_1(z)\) and \(X_2(z)\).

+ The initial value theorem

If \(x(n)\) is causal then

\[
x(0) = \lim_{z \to \infty} X(z) \quad (3.2.23)
\]
3.2 Properties of the z–Transform

Table 3.2 Properties of the z-transform

<table>
<thead>
<tr>
<th>Property</th>
<th>Time Domain</th>
<th>z- Domain</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notation</td>
<td>$x (n)$</td>
<td>$X (z)$</td>
<td>ROC: $r_2 <</td>
</tr>
<tr>
<td>$x_1 (n)$</td>
<td>$X_1 (z)$</td>
<td></td>
<td>ROC_1</td>
</tr>
<tr>
<td>$x_2 (n)$</td>
<td>$X_2 (z)$</td>
<td></td>
<td>ROC_2</td>
</tr>
<tr>
<td>Linearity</td>
<td>$a_1x_1 (n) + a_2x_2 (n)$</td>
<td>$a_1X_1 (z) + a_2X_2 (z)$</td>
<td>At least intersection of ROC_1 and ROC_2</td>
</tr>
<tr>
<td>Time shifting</td>
<td>$x (n-k)$</td>
<td>$z^{-k}X(z)$</td>
<td>That of $X (z)$, except $z=0$ if $k=0$ and $z = \infty$ if $k < 0$</td>
</tr>
<tr>
<td>Scaling in the z-domain</td>
<td>$a^n x (n)$</td>
<td>$X (a^{-1}z)$</td>
<td>$</td>
</tr>
<tr>
<td>Time reversal</td>
<td>$x (-n)$</td>
<td>$X (z^{-1})$</td>
<td>$1/r_1 <</td>
</tr>
<tr>
<td>Conjugation</td>
<td>$x^* (n)$</td>
<td>$X^* (z^*)$</td>
<td>ROC</td>
</tr>
</tbody>
</table>
3.2 Properties of the z–Transform

<table>
<thead>
<tr>
<th>Property</th>
<th>Formula</th>
<th>Includes ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real part</td>
<td>(Re{x(n)})</td>
<td>(1/2[X(z) + X^(z^)])</td>
</tr>
<tr>
<td>Imaginary part</td>
<td>(Im{x(n)})</td>
<td>(1/2j[X(z) - X^(z^)])</td>
</tr>
<tr>
<td>Differentiation in</td>
<td>(nx(n))</td>
<td>(r_2 <</td>
</tr>
<tr>
<td>Convolution</td>
<td>(x_1(n) * x_2(n))</td>
<td>(X_1(z)) (X_2(z))</td>
</tr>
<tr>
<td>Correlation</td>
<td>(r_{x_1x_2}(l) = x_1(l) * x_2(-l))</td>
<td>(R_{x_1x_2}(z) = X_1(z)) (X_2(z^{-1}))</td>
</tr>
<tr>
<td>Initial value theorem</td>
<td>If (x(n)) causal</td>
<td>(x(0) = \lim X(z))</td>
</tr>
<tr>
<td>Multiplication</td>
<td>(x_1(n)x_2(n))</td>
<td>(\frac{1}{2\pi j} \int_C X_1(v)X_2\left(\frac{z}{v}\right)v^{-1}dv)</td>
</tr>
<tr>
<td>Parseval's relation</td>
<td>(\sum_{n=-\infty}^{\infty} x_1(n)x_2^*(n))</td>
<td>(\frac{1}{2\pi j} \int_C X_1(v)X_2^\left(\frac{1}{v^}\right)v^{-1}dv)</td>
</tr>
</tbody>
</table>
Table 3.3 Some common z-transform pairs

<table>
<thead>
<tr>
<th>Signal, $x(n)$</th>
<th>z-transform, $x(z)$</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 $\delta(n)$</td>
<td>1</td>
<td>All z</td>
</tr>
<tr>
<td>2 $u(n)$</td>
<td>$\frac{1}{1-z^{-1}}$</td>
<td>$</td>
</tr>
<tr>
<td>3 $a^n u(n)$</td>
<td>$\frac{1}{1-az^{-1}}$</td>
<td>$</td>
</tr>
<tr>
<td>4 $na^n u(n)$</td>
<td>$\frac{az^{-1}}{(1-az^{-2})^2}$</td>
<td>$</td>
</tr>
<tr>
<td>5 $-a^n u(-n-1)$</td>
<td>$\frac{1}{1-az^{-1}}$</td>
<td>$</td>
</tr>
<tr>
<td>6 $-na^n u(-n-1)$</td>
<td>$\frac{az^{-1}}{(1-az^{-1})^2}$</td>
<td>$</td>
</tr>
<tr>
<td>7 $(\cos\omega_0 n) u(n)$</td>
<td>$\frac{1-z^{-1}\cos\omega_0}{1-2z^{-1}\cos\omega_0 + z^{-2}}$</td>
<td>$</td>
</tr>
</tbody>
</table>
3.2 Properties of the z–Transform

<table>
<thead>
<tr>
<th>Signal, $x(n)$</th>
<th>z- transform, $x(z)$</th>
<th>ROC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 $(\sin \omega_0 n) u(n)$</td>
<td>$\frac{z^{-1} \sin \omega_0}{1 - 2z^{-1} \cos \omega_0 + z^{-2}}$</td>
<td>$</td>
</tr>
<tr>
<td>9 $(a^n \cos \omega_0 n) u(n)$</td>
<td>$\frac{1 - az^{-1} \cos \omega_0}{1 - 2az^{-1} \cos \omega_0 + a^2 z^{-2}}$</td>
<td>$</td>
</tr>
<tr>
<td>10 $(a^n \sin \omega_0 n) u(n)$</td>
<td>$\frac{az^{-1} \sin \omega_0}{1 - 2az^{-1} \cos \omega_0 + a^2 z^{-2}}$</td>
<td>$</td>
</tr>
</tbody>
</table>
3.3 Rational z-transforms

+ Poles and Zeros

The **zeros** of a z-transform $X(z)$ are the values of z for which $X(z) = 0$.

The **pole** of a z-transform are value of z for which $X(z) = \infty$.

+ If $X(z)$ is a rational function, then

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 + b_1z^{-1} + \cdots + b_mz^{-m}}{a_0 + a_1z^{-1} + \cdots + a_Nz^{-N}} = \frac{\sum_{k=0}^{M} b_kz^{-k}}{\sum_{k=0}^{N} a_kz^{-k}} \quad (3.3.1)$$
3.3.1 Poles and Zeros

+ If $a_0 \neq 0$, $b_0 \neq 0$

\[
X(z) = \frac{N(z)}{M(z)} = \frac{b_0}{a_0} z^{-M+N} \frac{(z-z_1)(z-z_2)\ldots(z-z_M)}{(z-p_1)(z-p_2)\ldots(z-p_N)}
\]

\[
X(z) = G z^{N-M} \frac{\prod_{k=1}^{M}(z-z_k)}{\prod_{k=1}^{N}(z-p_k)} \tag{3.3.2}
\]

Where: $G = \frac{b_0}{a_0}$

+ $X(z)$ has M finite zeros at $z = z_1, z_2, \ldots, z_M$

N finite poles at $z = r_1, r_2, \ldots, r_N$
3.3.1 Poles and Zeros

+ We can represent $X(z)$ graphically by a *pole-zero plot* in the complex plane, which shows the location of *poles* by crosses (x) and the location of *zeros* by circles (o).

+ The z-transform $X(z)$ is a complex function of the complex variable $z = \text{Re}(z) + j\text{Im}(z)$.

\[
X(z) = \frac{z}{z - a} \quad \text{ROC: } |z| > a
\]

Figure 3.7 Pole-zero plot for the causal exponential signal $x(n) = a^n u(n) \quad a > 0$.
3.3.1 Poles and Zeros

+ $|X(z)|$ is a real and positive function of z. Since z represents a point in the complex plane, $|X(z)|$ is a two-dimensional function and describes a “surface”.

For example the z-transform

$$X(z) = \frac{z^{-1} - z^{-2}}{1 - 1.2732z^{-1} + 0.81z^{-2}} \quad (3.3.3)$$

Figure 3.3.4 Graph of $|X(z)|$ for the z-transform in (3.3.3)
3.3.2 Pole location and time-domain behavior for causal signals

+ We consider the relation between the *z-plane location* of a pole pair and the *form of the corresponding signal* in the time domain.

+ The *circle* $|z| = 1$ has a radius of 1, it is called the *unit circle*.

+ For example

\[
x(n) = a^n u(n) \leftrightarrow X(z) = \frac{1}{1 - az^{-1}}, \quad ROC: |z| > |a|
\]

having one *zero* at $z_1 = 0$ and the *pole* at $p_1 = a$ on the real axis, (see fig. 3.7, fig.3.11)
3.3.2 Pole location and time-domain behavior for causal signals

Figure 3.11 Time-domain behavior of a *single-real pole causal signal* as a function of the location of the pole with respect to the unit circle.
3.3.2 Pole location and time-domain behavior for causal signals

The **signal is decaying** if the **pole is inside the unit circle**, **fixed** if the **pole is on the unit circle**, and **growing** if the **pole is outside the unit circle**.

A causal real signal with a **double real pole** has the form: $X(n) = na^n u(n)$ (see table 3.3)

A double real pole on the unit circle results in an **unbound signal** (see Fig 3.3.6)
3.3.2 Pole location and time-domain behavior for causal signals

Figure 3.12 Time-domain behavior of causal signal corresponding to a double \((m=2)\) real pole, as a function of the pole location.
3.3.2 Pole location and time-domain behavior for causal signals

Figure 3.13 illustrates the case of *a pair of complex – conjugate poles*. This configuration of poles results in an *exponentially weighted sinusoidal signal*. The *amplitude* of the signal is *growing* if $r > 1$, *constant* if $r = 1$ (sinusoidal signals), and *decaying* if $r < 1$.

Figure 3.13 A pair of complex-conjugate poles corresponds to causal signals with oscillatory behavior.
3.3.2 Pole location and time-domain behavior for causal signals

\[z - \text{plane} \]

\[x(n) \quad r=1 \]

\[0 \quad 1 \]

\[z - \text{plane} \]

\[x(n) \quad r^n \]

\[0 \quad 1 \]

\[\omega_0 \]

\[r \]

©2013, CE Department

CuuDuongThanCong.com

https://fb.com/tailieudientucntt
3.3.2 Pole location and time-domain behavior for causal signals

Fig 3.14 shows the behavior of a causal signal with a double pair of poles on the unit circle.

A signal with a pole near the origin decays more rapidly than one associated with a pole near the unit circle.

Everything we have said about causal signals applies as well to causal LTI systems.

Figure 3.14 Causal signal corresponding to a double pair of complex–conjugate poles on the unit circle.
3.3.3 The system Function of a Linear Time-Invariant System

\[Y(z) = H(z)X(z) \quad (3.3.4) \]

- \(Y(z) \) - the z-transform of the output sequence \(y(n) \).
- \(X(z) \) - the z-transform of the input sequence \(x(n) \).
- \(H(z) \) - the z-transform of the unit sample response \(h(n) \).

\[H(z) = \frac{Y(z)}{X(z)} \quad (3.3.5) \]

\[H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n} \quad (3.3.6) \]

\(H(z) \) is called the **systems function**.

We have linear constant-coefficient difference equation:

\[y(n) = -\sum_{k=1}^{N} a_k y(n-k) + \sum_{k=0}^{M} b_k (n-k) \quad (3.3.7) \]
3.3.3 The system Function of a Linear Time-Invariant System

By applying the time-shifting property, we obtain.

\[
Y(z) = - \sum_{k=1}^{N} a_k Y(z) z^{-k} + \sum_{k=0}^{M} b_k X(z) z^{-k}
\]

\[
\frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{\infty} a_k z^{-k}}
\]

Or

\[
H(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}}
\]

(3.3.8)

+ If \(a_k = 0 \) for \(1 \leq k \leq N \), then

\[
H(z) = \sum_{k=0}^{M} b_k z^{-k} = \frac{1}{z^M} \sum_{k=0}^{M} b_k z^{M-k}
\]

(3.3.9)

\(H(z) \) contains \(M \) zeros, \(M \text{th-order} \) at the origin \(z = 0 \)

It is called an \textit{all-zero system}.
System has a finite-duration impulse response (FIR), and it is called an **FIR system** or **moving average (MA) system**.

+ If \(b_k = 0 \) for \(1 \leq k \leq M \), then

\[
H(z) = \frac{b_0 z^N}{\sum_{k=0}^{N} a_k z^{N-k}} \quad a_0 \equiv 1 \quad (3.3.10)
\]

\(H(z) \) consists of \(N \) pole, and an \(N \) th-order zero at the origin \(z = 0 \). This system is called an **all-pole system**.

The impulse response of such a system is infinite in duration, and hence it is an **IIR system**.

The general form of the system by (3.3.8) is called a **pole-zero system**, with \(N \) poles and \(M \) zeros and in **an IIR system**.
3.4 Inversion of the z-transform

The inverse z-transform is formally given by

\[x(n) = \frac{1}{2\pi j} \oint_C X(z)z^{n-1}dz \]

(3.4.1)

C - a circle in the ROC of x(z) in the z-plane

+ **There are 3 methods** for the evaluation

1. **Direct evaluation** of (3.4.1), by contour integration.
2. **Expansion into a series of terms**, in the variables z, and z^{-1}
3. **Partial-fraction expansion** and table lookup.
3.4.1 Inverse z-transform by contour Integration + Cauchy residue theorem

Let \(f(z) \) be a function of the complex variable \(z \), and \(C \) be a closed path in the \(z \)-plane.

If the derivative \(df(z)/dz \) exists on and inside the contour \(C \) and if \(f(z) \) has no poles at \(z = z_0 \), then

\[
\frac{1}{2\pi j} \oint_C \frac{f(z)}{z-z_0} \, dz = \begin{cases} f(z_0), & \text{if } z_0 \text{ is inside } C \\ 0, & \text{if } z_0 \text{ is outside } C \end{cases}
\]

(3.4.2)
3.4.1 Inverse z-transform by contour Integration

If the \((k+1)\) order derivative of \(f(z)\) exists and \(f(z)\) has no poles at \(z = z_0\), then

\[
\frac{1}{2\pi j} \oint_C \frac{f(z)}{(z-z_0)^k} \, dz = \left\{ \begin{array}{l}
\frac{1}{(k-1)!} \frac{d^{k-1}f(z)}{dz^{k-1}} \bigg|_{z=z_0} \quad \text{if } z_0 \text{ is outside } C \quad (3.4.3)
\end{array} \right.
\]

Suppose that

\[
p(z) = \frac{f(z)}{g(z)}
\]

\(f(z)\) has no pole inside the contour \(C\)

\(g(z)\) is a polynomial with distinct roots \(z_1, z_2, \ldots, z_n\) inside \(C\) then

\[
\frac{1}{2\pi j} \oint_C \frac{f(z)}{g(z)} \, dz = \sum_{i=1}^{n} A_i \quad (3.4.4)
\]
Chapter 3: Inverse z-transform by contour Integration

Where \(A_i(z) = (z - z_i)p(z) = (z-z_i)f(z)/g(z) \)
(3.4.5)

\(\{ A_i (z_i) \} \) are residues of the corresponding poles at \(z = z_i, \ i = 1,2,\ldots,n. \)

In the case the inverse z-transform we have

\[
x(n) = \sum_i (z-z_i)X(z)z^{n-1} \bigg|_{z=z_i}
\]

If \(X(z)z^{n-1} \) has no poles inside the contour \(C \) for one or more values of \(n \), then \(x(n) = 0 \) for these values.
3.4.2 Inverse z-transform by Power Series

Expansion

Given a z-transform $X(z)$ with its corresponding ROC, we can expand $X(z)$ into a power series of the form.

$$X(z) = \sum_{n=-\infty}^{\infty} c_n z^{-n} \quad (3.4.7)$$

Which converges in the given ROC. Then, by uniqueness of the z-transform, $X(n) = c_n$ for all n. When $X(z)$ is rational, the expansion can be performed by long division.
For example

Determine the inverse z-transform of

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

Where ROC: $|z| > 1$
3.4.2 Inverse z-transform by Power Series Expansion

Solution.

Since the ROC is the exterior of a circle, we expect $x(n)$ to be a causal signal. Thus, we seek a power series expansion in negative powers of z.

$$x(z) = \frac{1}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}} = 1 + \frac{3}{2}z^{-1} + \frac{7}{4}z^{-2} + \frac{15}{8}z^{-3} + \frac{31}{16}z^{-4} + \cdots$$

by comparing this relation with (3.11) we conclude that

$$x(n) = \left\{ \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \ldots \right\}$$
3.4.3 The inverse z-Transform by Partial-Fraction Expansion

The function $X(z)$ as a linear combination.

$$X(z) = \alpha_1 X_1(z) + \alpha_2 X_2(z) + \ldots + \alpha_K X_K(z) \quad (3.4.8)$$

Where $X_1(z), \ldots, X_k(z)$ are expressions with inverse transform $x_1(n), \ldots, x_k(n)$ available in a table of z-transform pairs. Then,

$$x(n) = \alpha_1 x_1(n) + \alpha_2 x_2(n) + \ldots + \alpha_K x_K(n) \quad (3.4.9)$$

We assume that $a_0 = 1$, so that (3.3.1) can be expressed as

$$X(z) = \frac{N(z)}{D(z)} = \frac{b_0 b_1 z^{-1} + \ldots + b_M z^{-M}}{1 + a_1 z^{-1} + \ldots + a_N z^{-N}} \quad (3.4.10)$$
3.4.3 The inverse z-Transform by Partial-Fraction Expansion

Any *improper rational function* \((M \geq N)\) can be expressed as.

\[
X(z) = \frac{N(z)}{D(z)} = c_0 c_1 z^{-1} + \cdots + c_{M-N} z^{-(M-N)} + \frac{N_1(z)}{D_1(z)} \tag{3.4.11}
\]

We perform a partial fraction expansion of the proper rational function. From (3.4.10) with \(a_N \neq 0\) and \(M < N\).

Then, we invert each of the terms.

\[
X(z) = \frac{b_0 z^N + b_1 z^{N-1} + \cdots + b_M z^{N-M}}{z^N + a_1 z^{N-1} + \cdots + a_N} \tag{3.4.13}
\]

\[
\Rightarrow \quad \frac{X(z)}{z} = \frac{b_0 z^{N-1} + b_1 z^{N-2} + \cdots + b_M z^{N-M}}{z^N + a_1 z^{N-1} + \cdots + a_N} \tag{3.4.14}
\]
3.4.3 The inverse z-Transform by Partial-Fraction Expansion

Distinct poles

Suppose that the poles $p_1, p_2, \ldots p_N$ are all different. Then we seek an expansion of the form

$$\frac{X(z)}{z} = \frac{A_1}{z-p_1} + \frac{A_2}{z-p_2} + \ldots + \frac{A_N}{z-p_N} \quad (3.4.15)$$

$$\Leftrightarrow \quad \frac{(z-p_k)X(z)}{z} = \frac{(z-p_k)A_1}{z-p_1} + \ldots + A_k + \ldots + \frac{(z-p_k)A_N}{z-p_N} \quad (3.4.20)$$

with $z = p_k$,

$$A_k = \frac{(z-p_k)X(z)}{z} \bigg|_{z = p_k}, \quad k = 1, 2, \ldots, N \quad (3.4.21)$$
3.4.3 The inverse z-Transform by Partial-Fraction Expansion

Multiple-order poles

If $X(z)$ has of multiplicity l, that is, it contains in its denominator the factor $(z - p_k)^l$, then the expansion (3.4.15) is no longer true. The partial factor expansion must contain the terms.

$$\frac{A_{1k}}{z - p_k} + \frac{A_{2k}}{(z - p_k)^2} + \cdots + \frac{A_{lk}}{(z - p_k)^l}$$
3.4.3 The inverse z-Transform by Partial-Fraction Expansion

Now, first \(X(z) \) contains distinct poles.

\[
X(z) = A_1 \frac{1}{1 - p_1 z^{-1}} + A_2 \frac{1}{1 - p_2 z^{-1}} + \cdots + A_N \frac{1}{1 - p_N z^{-1}} \tag{3.4.27}
\]

From \(x(n) = Z^{-1}\{X(z)\} \), then

\[
Z^{-1}\left\{ \frac{1}{1 - P_k z^{-1}} \right\} = \begin{cases}
(p_k)^n u(n), & \text{if } ROC: |z| > |p_k| (causal signals) \\
-(p_k)^2 u(-n-1), & \text{if } ROC: |z| < |p_k| (anticausal signals)
\end{cases} \tag{3.4.28}
\]

With \(|z| > p_{\text{max}}\) where \(p_{\text{max}} = \max \{|p_1|\} \)

Then

\[
x(n) = (A_1 p_1^n + A_2 p_2^n + \cdots + A_N p_N^n) u(n) \tag{3.4.29}
\]

If all poles are \textit{real}, (3.4.29) is a linear combination of real exponential signals.
3.4.3 The inverse z-Transform by Partial-Fraction Expansion

If all poles are distinct but some of then are complex,

\[x_k(n) = [A_k(p_k)^n + A_k(p_k^*)^n]u(n) \quad (3.4.30) \]

\[A_k = |A_k|e^{j\alpha_k} \quad (3.4.31) \]

\[P_k = |A_k|e^{j\beta_k} \quad (3.4.32) \]

\[x_k(n) = |A_k|r_k^n\left[e^{j(\beta_k n + \alpha_k)} + e^{-j(\beta_k n + \alpha_k)} \right]u(n) \]

or

\[x_k(n) = 2|A_k|r_k^n \cos(\beta_k n + \alpha_k)u(n) \quad (3.4.33) \]
3.4.3 The inverse z-Transform by Partial-Fraction Expansion

\[Z^{-1}\left\{ \frac{A_k}{1-p_kz^{-1}} + \frac{A^*_k}{1-p^*_kz^{-1}} \right\} = 2|A_k|r^n_k \cos(\beta_k n + \alpha_k) u(n) \quad (3.4.34) \]

if the ROC: is \(|z| > |p| = r_k \)

\(X(z) \) has **multiple poles**.

\[Z^{-1}\left\{ \frac{pz^{-1}}{(1-pz^{-1})^2} \right\} = np^n u(n) \quad (3.4.35) \]

provided that the ROC is \(|z| > |p| \)
3.4.4 Decomposition of Rational z-Transforms

If $X(z)$ expressed as:

$$X(z) = \frac{\sum_{k=1}^{M} (1 - z_k z^{-1})}{1 + \sum_{k=1}^{N} a_k z^{-k}} = b_0 \prod_{k=1}^{M} (1 - z_k z^{-1}) \prod_{k=1}^{N} (1 - p_k z^{-1})$$ \hspace{1cm} (3.4.40)

If $M \geq N$, $a_0 \equiv 1$, then

$$X(z) = \sum_{k=0}^{M-N} c_k z^{-k} + X_{pr}(z) \hspace{1cm} (3.4.41)$$

$$X_{pr}(z) = A_1 \frac{1}{1 - p_1 z^{-1}} + A_2 \frac{1}{1 - p_2 z^{-1}} + \cdots + A_N \frac{1}{1 - p_N z^{-1}} \hspace{1cm} (3.4.42)$$

$$\frac{A_1}{1 - p z^{-1}} + \frac{A_1^*}{1 - p^k z^{-1}} = \frac{b_0 + b_1 z^{-1}}{1 + a_1 z^{-1} + a_2 z^{-2}} \hspace{1cm} (3.4.43)$$
3.4.4 Decomposition of Rational z-Transforms

Where

\[b_0 = 2 \text{Re}(A) \quad a_1 = -2 \text{Re}(p) \quad (3.4.44) \]
\[b_1 = 2 \text{Re}(A_p^*) \quad a_2 = |p|^2 \]

\[\Rightarrow X(z) = \sum_{k=0}^{M-N} c_k z^{-k} + \sum_{k=1}^{K_1} \frac{b_k}{1 + a_k z^{-1}} + \sum_{k=1}^{K_2} \frac{b_{0k} + b_{1k} z^{-1}}{1 + a_{1k} z^{-1} + a_{2k} z^{-2}} \quad (3.4.45) \]

Where \(k_1 + 2k_2 = N \)

Assuming for simplicity that \(M = N \)

\[X(z) = b_0 \prod_{k=1}^{K_1} \frac{1 + b_k z^{-1}}{1 + a_k z^{-1}} \prod_{k=1}^{K_2} \frac{1 + b_{1k} z^{-1} + b_{2k} z^{-2}}{1 + a_{1k} z^{-1} + a_{2k} z^{-2}} \quad (3.4.48) \]

Where

\[b_{1k} = -2 \text{Re}(z_k), \quad a_{1k} = -2 \text{Re}(p_k) \]
\[b_{2k} = |z_k|^2, \quad a_{2k} = |p_k|^2 \quad (3.4.47) \]
3.5 The one-side z-Transform

Definition and properties

The one-sided or unilateral z-transform of a signal $x(n)$ is defined

$$X^+(z) = \sum_{n=0}^{\infty} x(n)z^{-n} \quad (3.5.1)$$

notations $Z^+\{x(n)\}$ and $x(n) \rightarrow X^+(z)$
3.5.1 Definition and properties

The one-side z-transform has the following characteristics:

1. It does not contain information about the signal $x(n)$ for negative values of time.
2. It is unique only for causal signals, because only these signals are zero for $n < 0$
3. The ROC of $X^+(z)$, is always the exterior of a circle.
3.5.1 Definition and properties

Shifting Property

Case 1: Time delay if

\[x(n) \xrightarrow{z^+} X^+(z) \]

then

\[x(n-k) \xrightarrow{z^{-k}} z^{-k}[X^+(z) + \sum_{n=1}^{k} x(-n)z^n] \quad k > 0 \quad (3.5.2) \]

In case \(x(n) \) is causal, then

\[x(n-k) \xrightarrow{z^+} z^{-k}X^+(z) \quad (3.5.3) \]

\[Z^+[x(n-k)] = [x(-k)+x(-k+1)z^{-1} + \ldots + x(-1)z^{-k+1}] + z^{-k}X^+(z) \quad k > 0 \quad (3.5.4) \]
3.5.1 Definition and properties

Case 2: Time advance if

\[x(n) \xrightarrow{z^+} X^+(z) \]

then

\[x(n + k) \xrightarrow{z^+} z^k \left[X^+(z) - \sum_{n=0}^{k-1} x(n) z^{-n} \right] k > 0 \quad (3.5.5) \]

Final value theorem

if

\[x(n) \xrightarrow{z^+} X^+(z) \]

then

\[\lim_{n \to \infty} x(n) = \lim_{z \to 1} (z - 1) X^+(z) \quad (3.5.6) \]

The limit in (3.5.6) exists if the ROC of \((z-1) X^+(z) \) includes the unit circle.
3.5.2 Solution of Difference Equations

By reducing the difference equation relating the two time-domain signals to an equivalent algebraic equation relating their one-sided z-transforms.

This equation can be easily solved to obtain the transform of the desired signal.

The signal in the time domain is obtained by inverting the resulting z-transform.
3.6 Analysis of Linear Time – invariant System in the z-Domain

Response of system with rational system functions

If \(x(n) \) has a rational z-transform \(X(z) \) of the form

\[
X(z) = \frac{N(z)}{Q(z)} \quad (3.6.1)
\]

we represent

If the system is initially relaxed, that is \(y(-1) = y(-2) = \ldots = y(-N) = 0 \), then

\[
Y(z) = H(z)X(z) = \frac{B(z)N(z)}{A(z)Q(z)} \quad (3.6.2)
\]
3.6.1 Response of system with rational system functions

If system contains simple poles \(p_1, p_2, \ldots, p_N \) and z-transform of the input signal contains poles \(q_1, q_2, \ldots, q_L \). Where \(p_k \neq q_m \), then

\[
Y(z) = \sum_{k=1}^{N} \frac{A_k}{1 - p_k z^{-1}} + \sum_{k=1}^{L} \frac{Q_k}{1 - q_k z^{-1}} \quad (3.6.3)
\]

The inverse transform of \(Y(z) \) yields

\[
y(n) = \sum_{k=1}^{N} A_k (p_k)^n u(n) + \sum_{k=1}^{L} Q_k (q_k)^n u(n) \quad (3.6.4)
\]

Scale factors \(\{A_k\} \) and \(\{Q_k\} \) are functions of both sets of poles \(\{p_k\} \) and \(\{q_k\} \).

The first part called the **natural response** of the system. The second part is called **forced response** of the system.
Suppose that $X(n)$ is applied to the pole-zero system at $n = 0$. ($x(n)$ is causal)

Since the input $x(n)$ is causal and output $y(n)$ for $n \geq 0$

$$Y^+(z) = - \sum_{k=1}^{N} a_k z^{-k} \left[Y^+(z) + \sum_{n=1}^{k} y(-n) 2^n \right] + \sum_{k=0}^{M} b_k z^{-k} X^+(z) \quad (3.6.5)$$

Or

$$Y^+(z) = \frac{\sum_{k=0}^{M} b_k z^{-k}}{1 + \sum_{k=1}^{N} a_k z^{-k}} X(z) - \frac{\sum_{K=1}^{N} a_k z^{-k} \sum_{n=1}^{K} y(-n) z^k}{1 + \sum_{K=1}^{N} a_k z^{-k}} \quad (3.6.6)$$

$$= H(z)X(z) + \frac{N_0(z)}{A(z)}$$
3.6.2 Response of poles – zero system with Nonzero Initial conditions

Where

\[N_0(z) = -\sum_{k=1}^{N} a_k z^{-k} \sum_{n=1}^{k} y(-n)z^n \]

(3.6.7)

\[Y_{zs}(z) = H(z)X(z) \]

(3.6.8)

\[Y_{zi}^+(z) = \frac{N_0(z)}{A(z)} \]

(3.6.9)

Thus,

\[y(n) = y_{zs}(n) + y_{zi}(n) \]

(3.6.10)

Since \(A(z) \) has poles as \(p_1, p_2, \ldots, p_N \), then

\[y_{zi}(n) = \sum_{k=1}^{N} D_k (p_k)^m u(n) \]

(3.6.11)
3.6.2 Response of poles – zero system with Nonzero Initial conditions

This can be added to (3.6.4)

\[
y(n) = \sum_{k=1}^{N} A'_{k} (p_{k})^{n} u(n) + \sum_{k=1}^{L} Q_{k} (q_{k})^{n} u(n) \quad (3.6.12)
\]

Where

\[
A'_{k} = A_{k} + D_{k} \quad (3.6.13)
\]

The effect of the initial conditions is to alter the natural response of the system though modifications of the scale factors \{ A_{k} \}

There are no new poles introduced by the nonzero initial conditions.
3.6.3 Transient and Steady – state Responses

The **natural response** of a causal system has the form

$$y_{nr}(n) = \sum_{k=1}^{N} A_k (p_k)^n u(n)$$ \hspace{1cm} (3.6.14)

Where \(\{ p_k \} , \ k = 1, 2 \ldots, N \) are the poles of the system.
\(\{ A_k \} \) are scale factors

The **forced response** of the system has the form

$$y_{fr}(n) = \sum_{k=1}^{L} Q_k (q_k)^n u(n)$$ \hspace{1cm} (3.6.15)

Where \(\{ q_k \} , \ K = 1, 2, \ldots, L \) are the poles
\(\{ Q_k \} \) are scale factors
when the *causal input signal* is a *sinusoid* the poles fall on the unit circle, consequently the *forced response* is also a *sinusoid*. It is called the *steady-state response* of the system.
3.6.4 Causality and Stability

A linear time-invariant system is causal if and only if the ROC of the system function is the exterior of the circle of radius $r < \infty$, including the point $z = \infty$.

A necessary and sufficient conditions for a linear time-invariant system to be **BIBO stable** is

$$
\sum_{n=-\infty}^{\infty} |H(n)| < \infty
$$
3.6.4 Causality and Stability

\[H(z) \] must contain the unit circle within its ROC.

\[
H(z) = \sum_{n=-\infty}^{\infty} h(n)z^{-n}
\]

when on the unit circle (\(|z| = 1\))

\[
|H(z)| \leq \sum_{n=-\infty}^{\infty} |h(n)||z^{-n}|
\]

A linear time-invariant system is BIBO stable if and only if the ROC of the system function includes the unit circle.

A causal linear time-invariant system is BIBO stable if and only if the poles of \(H(z) \) are inside the unit circle.
When a z-transform has a pole that is at the same location as a zero, the pole is canceled by the zero.

Pole-zero cancellations can occur either in the system function itself or in the product of the system function with the z-transform of the input signal.
3.6.6 Multiple–Order poles and stability

The input is bounded if its z-transform contains pole \(\{ q_k \} \), \(k = 1, 2, \ldots, L \) which satisfy the condition \(|q_k| \leq 1 \) for all \(k \).

Thus, the forced response of the systems is also bounded, even when the input signal contains one or more distinct poles on the unit circle.
3.6.8 Stability of Second–Order Systems

A causal two-pole system described by the second-order difference equation.

\[y(n) = -a_1y(n-1) - a_2y(n-2) + b_0x(n) \] \hspace{1cm} (3.6.26)

\[H(z) = \frac{Y(z)}{X(z)} = \frac{b_0}{1 + a_1z^{-1} + a_2z^{-2}} = \frac{b_0z^2}{z^2 + a_1z + a_2} \] \hspace{1cm} (3.6.27)

\[p_1, p_2 = -\frac{a_1}{2} \pm \frac{\sqrt{a_1^2 - 4a_2}}{4} \] \hspace{1cm} (3.6.28)

For stability

\[|a_2| = |p_1p_2| = |p_1||p_2| < 1 \] \hspace{1cm} (3.6.31)

\[|a_1| < 1 + a_2 \] \hspace{1cm} (3.6.32)
3.6.8 Stability of Second–Order Systems

Figure 3.15 Region of stability (stability triangle) in the \((a_1, a_2)\) coefficient plane for a second-order system.

Problems : 3.1, 3.2, 3.5, 3.11, 3.15, 3.43, 3.47.